Algèbre
Dimension de Hochschild des algèbres graduées
Comptes Rendus. Mathématique, Tome 341 (2005) no. 10, pp. 597-600.

On démontre que la dimension de Hochschild des algèbres N-graduées connexes sur un corps commutatif est égale à la dimension projective du module trivial, et aussi à la dimension globale. Le fait que la dimension projective du module trivial coïncide avec la dimension globale est bien connu et fondamental dans la théorie, mais la preuve donnée ici consistant à passer aux bimodules rend le résultat plus naturel.

It is a basic fact that the global dimension of a connected N-graded algebra coincides with the projective dimension of the trivial module. This result is recovered by proving that the Hochschild dimension is equal to the projective dimension of the trivial module. Thus the result becomes more natural with bimodules entering into the picture.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.09.039
Berger, Roland 1

1 LaMUSE, faculté des sciences et techniques, 23, rue Paul-Michelon, 42023 Saint-Étienne cedex 2, France
@article{CRMATH_2005__341_10_597_0,
     author = {Berger, Roland},
     title = {Dimension de {Hochschild} des alg\`ebres gradu\'ees},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {597--600},
     publisher = {Elsevier},
     volume = {341},
     number = {10},
     year = {2005},
     doi = {10.1016/j.crma.2005.09.039},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2005.09.039/}
}
TY  - JOUR
AU  - Berger, Roland
TI  - Dimension de Hochschild des algèbres graduées
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 597
EP  - 600
VL  - 341
IS  - 10
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2005.09.039/
DO  - 10.1016/j.crma.2005.09.039
LA  - fr
ID  - CRMATH_2005__341_10_597_0
ER  - 
%0 Journal Article
%A Berger, Roland
%T Dimension de Hochschild des algèbres graduées
%J Comptes Rendus. Mathématique
%D 2005
%P 597-600
%V 341
%N 10
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2005.09.039/
%R 10.1016/j.crma.2005.09.039
%G fr
%F CRMATH_2005__341_10_597_0
Berger, Roland. Dimension de Hochschild des algèbres graduées. Comptes Rendus. Mathématique, Tome 341 (2005) no. 10, pp. 597-600. doi : 10.1016/j.crma.2005.09.039. http://archive.numdam.org/articles/10.1016/j.crma.2005.09.039/

[1] Artin, M.; Schelter, W.F. Graded algebras of global dimension 3, Adv. Math., Volume 66 (1987), pp. 171-216

[2] Artin, M.; Tate, J.; Van den Bergh, M. Some Algebras Associated to Automorphisms of Elliptic Curves, The Grothendieck Festschrift, vol. 1, Birkhäuser, Basel, 1990

[3] Berger, R. Koszulity for nonquadratic algebras, J. Algebra, Volume 239 (2001), pp. 705-734

[4] Berger, R.; Dubois-Violette, M.; Wambst, M. Homogeneous algebras, J. Algebra, Volume 261 (2003), pp. 172-185

[5] Berger, R.; Ginzburg, V. Symplectic reflection algebras and non-homogeneous N-Koszul property | arXiv

[6] Berger, R.; Marconnet, N. Koszul and Gorenstein properties for homogeneous algebras (Alg. Rep. Theory, à paraître) | arXiv

[7] Bourbaki, N. Algèbre homologique, Masson, 1980 (Chapitre 10 du livre d'Algèbre)

[8] H. Cartan, Homologie et cohomologie d'une algèbre graduée, Séminaire Cartan, Paris, 1958–59, exposé 15

[9] Cartan, H.; Eilenberg, S. Homological Algebra, Princeton University Press, 1956

[10] Connes, A.; Dubois-Violette, M. Yang–Mills algebra, Lett. Math. Phys., Volume 61 (2002), pp. 149-158

[11] Connes, A.; Dubois-Violette, M. Yang–Mills and some related algebras | arXiv

[12] Connes, A.; Dubois-Violette, M. Noncommutative finite-dimensional manifolds I. Spherical manifolds and related examples, Comm. Math. Phys., Volume 230 (2002), pp. 539-579

[13] Connes, A.; Dubois-Violette, M. Moduli space and structure of noncommutative 3-spheres, Lett. Math. Phys., Volume 66 (2003), pp. 91-121

[14] Fløystad, G.; Vatne, J.E. PBW-deformations of N-Koszul algebras | arXiv

[15] Nastacescu, C.; Van Oystaeyen, F. Graded Ring Theory, North-Holland, 1982

[16] Odesskii, A.V.; Feigin, B.L. Sklyanin elliptic algebras, Functional Anal. Appl., Volume 23 (1989), pp. 207-214

[17] Stafford, J.T. Noncommutative projective geometry, ICM 2002, vol. II, Beijing Higher Education Press, 2002, pp. 93-103

[18] Tate, J.; Van den Bergh, M. Homological properties of Sklyanin algebras, Invent. Math., Volume 124 (1996), pp. 619-647

[19] Weibel, C.A. An Introduction to Homological Algebra, Cambridge University Press, 1994

Cité par Sources :