In this note we deduce a new mathematical representation, based on a discrete-time nonlinear state–space formulation, to characterize Generalized AutoRegresive Conditional Heteroskedasticity (GARCH) models. The purpose pursued by this article is to use the models presented herein to develop estimation techniques which are also valid in the situation when observations are missing.
Dans cette note, on déduit une nouvelle représentation mathématique, basée sur une formulation espace–état en temps discret non linéaire, pour caractériser le modèle GARCH. Lʼobjectif poursuivi dans ce travail est dʼutiliser les modèles présentés ici afin de développer des techniques dʼestimation qui soient aussi valables dans des situations où des données sont manquantes.
Accepted:
Published online:
@article{CRMATH_2013__351_5-6_235_0, author = {Ossand\'on, Sebastian and Bahamonde, Natalia}, title = {A new nonlinear formulation for {GARCH} models}, journal = {Comptes Rendus. Math\'ematique}, pages = {235--239}, publisher = {Elsevier}, volume = {351}, number = {5-6}, year = {2013}, doi = {10.1016/j.crma.2013.02.014}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2013.02.014/} }
TY - JOUR AU - Ossandón, Sebastian AU - Bahamonde, Natalia TI - A new nonlinear formulation for GARCH models JO - Comptes Rendus. Mathématique PY - 2013 SP - 235 EP - 239 VL - 351 IS - 5-6 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2013.02.014/ DO - 10.1016/j.crma.2013.02.014 LA - en ID - CRMATH_2013__351_5-6_235_0 ER -
%0 Journal Article %A Ossandón, Sebastian %A Bahamonde, Natalia %T A new nonlinear formulation for GARCH models %J Comptes Rendus. Mathématique %D 2013 %P 235-239 %V 351 %N 5-6 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2013.02.014/ %R 10.1016/j.crma.2013.02.014 %G en %F CRMATH_2013__351_5-6_235_0
Ossandón, Sebastian; Bahamonde, Natalia. A new nonlinear formulation for GARCH models. Comptes Rendus. Mathématique, Volume 351 (2013) no. 5-6, pp. 235-239. doi : 10.1016/j.crma.2013.02.014. http://archive.numdam.org/articles/10.1016/j.crma.2013.02.014/
[1] GARCH processes: structure and estimation, Bernoulli, Volume 9 (2003) no. 2, pp. 201-227
[2] Generalized autoregressive conditional heteroskedasticity, J. Econom., Volume 31 (1986) no. 3, pp. 307-327
[3] Time Series Analysis by State Space Methods, Oxf. Statist. Sci. Ser., vol. 24, Oxford University Press, Oxford, 2001
[4] Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, Volume 50 (1982) no. 4, pp. 987-1007
[5] A new approach to linear filtering and prediction problems, Trans. ASME J. Basic Eng., Volume 82 (1960), pp. 35-45
[6] New results in filtering and prediction theory, Trans. ASME J. Basic Eng., Volume 83 (1961), pp. 95-108
[7] S. Ossandón, N. Bahamonde, On the nonlinear estimation of GARCH models using an extended Kalman filter, in: Lectures Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering 2011, WCE 2011, 6–8 July 2011, London, UK, pp. 148–151.
[8] S. Ossandón, N. Bahamonde, Nonlinear parameter estimation for state–space ARCH models with missing observations, in: Recent Advances in Systems Science & Mathematical Modelling: Proceedings of the 3rd International Conference on Mathematical Models for Engineering Science, MMESʼ12, 2–4 December 2012, Paris, France, 2012, pp. 258–263.
Cited by Sources: