We consider the chemotaxis system:
On considère le système de la chimiotaxie :
Accepted:
Published online:
@article{CRMATH_2013__351_15-16_585_0, author = {Baghaei, Khadijeh and Hesaaraki, Mahmoud}, title = {Global existence and boundedness of classical solutions for a chemotaxis model with logistic source}, journal = {Comptes Rendus. Math\'ematique}, pages = {585--591}, publisher = {Elsevier}, volume = {351}, number = {15-16}, year = {2013}, doi = {10.1016/j.crma.2013.07.027}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2013.07.027/} }
TY - JOUR AU - Baghaei, Khadijeh AU - Hesaaraki, Mahmoud TI - Global existence and boundedness of classical solutions for a chemotaxis model with logistic source JO - Comptes Rendus. Mathématique PY - 2013 SP - 585 EP - 591 VL - 351 IS - 15-16 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2013.07.027/ DO - 10.1016/j.crma.2013.07.027 LA - en ID - CRMATH_2013__351_15-16_585_0 ER -
%0 Journal Article %A Baghaei, Khadijeh %A Hesaaraki, Mahmoud %T Global existence and boundedness of classical solutions for a chemotaxis model with logistic source %J Comptes Rendus. Mathématique %D 2013 %P 585-591 %V 351 %N 15-16 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2013.07.027/ %R 10.1016/j.crma.2013.07.027 %G en %F CRMATH_2013__351_15-16_585_0
Baghaei, Khadijeh; Hesaaraki, Mahmoud. Global existence and boundedness of classical solutions for a chemotaxis model with logistic source. Comptes Rendus. Mathématique, Volume 351 (2013) no. 15-16, pp. 585-591. doi : 10.1016/j.crma.2013.07.027. http://archive.numdam.org/articles/10.1016/j.crma.2013.07.027/
[1] Finite-time blowup and global-in-time unbounded solutions to a parabolic–parabolic quasilinear Keller–Segel system in higher dimensions, J. Differ. Equ., Volume 252 (2012), pp. 5832-5851
[2] Chemotactic collapse for the Keller–Segel model, J. Math. Biol., Volume 35 (1996), pp. 177-194
[3] A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa, Cl. Sci. IV, Volume 24 (1997), pp. 633-683
[4] Global existence for a parabolic chemotaxis model with prevention of overcrowding, Acta Appl. Math., Volume 26 (2001), pp. 280-301
[5] A userʼs guide to PDE models for chemotaxis, J. Math. Biol., Volume 58 (2009), pp. 183-217
[6] From 1970 until present: the Keller–Segel model in chemotaxis and its consequences, I, Jahresber. Dtsch. Math.-Ver., Volume 105 (2003), pp. 103-165
[7] From 1970 until present: the Keller–Segel model in chemotaxis and its consequences, II, Jahresber. Dtsch. Math.-Ver., Volume 106 (2004), pp. 51-69
[8] Blow-up in a chemotaxis model without symmetry assumptions, Eur. J. Appl. Math., Volume 12 (2001), pp. 159-177
[9] Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equ., Volume 215 (2005), pp. 52-107
[10] On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., Volume 329 (1992), pp. 819-824
[11] Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., Volume 26 (1970), pp. 399-415
[12] Aggregating pattern dynamics in a chemotaxis model including growth, Physica, A, Volume 230 (1996), pp. 499-543
[13] Global existence and boundedness of classical solutions to a parabolic–parabolic chemotaxis system, Nonlinear Anal., Real World Appl., Volume 14 (2013), pp. 1634-1642
[14] Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math. Sci. Appl., Volume 5 (1995), pp. 581-601
[15] Blow-up of nonradial solutions to parabolic–elliptic systems modelling chemotaxis in two-dimensional domains, J. Inequal. Appl., Volume 6 (2001), pp. 37-55
[16] Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Volume 40 (1997), pp. 411-433
[17] Global existence of solutions to a parabolic–parabolic system for chemotaxis with weak degradation, Nonlinear Anal. TMA, Volume 74 (2011), pp. 286-297
[18] Exponential attractor for a chemotaxis–growth system of equations, Nonlinear Anal. TMA, Volume 51 (2002), pp. 119-144
[19] Finite dimensional attractors for one-dimensional Keller–Segel equations, Funkc. Ekvacioj, Volume 44 (2001), pp. 441-469
[20] Parabolic system of chemotaxis: Blow-up in a finite and the infinite time, Methods Appl. Anal., Volume 8 (2001), pp. 349-367
[21] Boundedness in a chemotaxis model with oxygen consumption by bacteria, J. Math. Anal. Appl., Volume 381 (2011), pp. 521-529
[22] Boundedness in a quasilinear parabolic–parabolic Keller–Segel system with subcritical sensitivity, J. Differ. Equ., Volume 252 (2012), pp. 692-715
[23] Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant, J. Differ. Equ., Volume 252 (2012), pp. 2520-2543
[24] A chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 32 (2007), pp. 849-877
[25] Boundedness in the higher-dimensional parabolic–parabolic chemotaxis system with logistic source, Commun. Partial Differ. Equ., Volume 35 (2010), pp. 1516-1537
[26] Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., Volume 283 (2010), pp. 1664-1673
[27] Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model, J. Differ. Equ., Volume 248 (2010), pp. 2889-2905
[28] Does a ‘volume-filling effect’ always prevent chemotactic collapse?, Math. Methods Appl. Sci., Volume 33 (2010), pp. 12-24
[29] Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system, J. Math. Pures Appl. (2013) (in press) | DOI
[30] Norm behavior of solutions to a parabolic system of chemotaxis, Math. Jpn., Volume 45 (1997), pp. 241-265
Cited by Sources: