Dans cet article, nous étudions l'équation de la chaleur pour la géométrie matricielle modèle . Nos principaux résultats concernent le comportement global de l'équation de la chaleur. Nous parvenons à montrer que, si la matrice initiale est définie positive dans , alors existe pour tout temps et reste définie positive. Nous montrons également la stabilité de l'entropie des solutions de l'équation de la chaleur.
In this paper, we study the heat equation in a model matrix geometry . Our main results are about the global behavior of the heat equation on . We can show that if is the initial positive definite matrix in , then exists for all time and is positive definite too. We can also show the entropy stability of the solutions to the heat equation.
Accepté le :
Publié le :
@article{CRMATH_2015__353_4_351_0, author = {Li, Jiaojiao}, title = {Heat equation in a model matrix geometry}, journal = {Comptes Rendus. Math\'ematique}, pages = {351--355}, publisher = {Elsevier}, volume = {353}, number = {4}, year = {2015}, doi = {10.1016/j.crma.2014.10.024}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2014.10.024/} }
TY - JOUR AU - Li, Jiaojiao TI - Heat equation in a model matrix geometry JO - Comptes Rendus. Mathématique PY - 2015 SP - 351 EP - 355 VL - 353 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2014.10.024/ DO - 10.1016/j.crma.2014.10.024 LA - en ID - CRMATH_2015__353_4_351_0 ER -
Li, Jiaojiao. Heat equation in a model matrix geometry. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 351-355. doi : 10.1016/j.crma.2014.10.024. http://archive.numdam.org/articles/10.1016/j.crma.2014.10.024/
[1] The Ricci flow on noncommutative two tori, Lett. Math. Phys., Volume 101 (2012), pp. 173-194
[2] Ordinary Differential Equations with Applications, Springer Science+Business Media, 2006
[3] Noncommutative Geometry, Academic Press, New York, 1994
[4] Modular curvature for noncommutative two tori, J. Amer. Math. Soc., Volume 27 (2014), pp. 639-684
[5] The Gauss–Bonnet theorem for the noncommutative two torus, Noncommutative Geometry, Arithmetic, and Related Topics, Johns Hopkins University Press, Baltimore, MD, USA, 2011, pp. 141-158
[6] Curved noncommutative torus and Gauss–Bonnet, J. Math. Phys., Volume 54 (2013), p. 013518
[7] Mass under the Ricci flow, Commun. Math. Phys., Volume 274 (2007) no. 1, pp. 65-80
[8] Noncommutative Ricci flow in a matrix geometry, J. Phys. A, Math. Theor., Volume 47 (2014), p. 045203
[9] A continuity property of the entropy density for spin lattice systems, Commun. Math. Phys., Volume 31 (1973), pp. 291-294
[10] Scalar curvature for the noncommutative two torus, J. Noncommut. Geom., Volume 7 (2013), pp. 1145-1183
[11] Nonlinear models in dimensions, Phys. Rev. Lett., Volume 45 (1980), pp. 1057-1060
[12] Nonlinear models in dimensions, Ann. Phys., Volume 163 (1985), pp. 318-419
[13] Three-manifolds with positive Ricci curvature, J. Differ. Geom., Volume 17 (1982), pp. 255-306
[14] The Ricci flow on surfaces, Santa Cruz, CA, USA, 1986 (Contemp. Math.), Volume vol. 71 (1988), pp. 237-262
[15] Ricci flow and black holes, Class. Quantum Gravity, Volume 23 (2006), pp. 6683-6707
[16] Quantum theory of a massless relativistic surface and a two dimensional bound state problem, Massachusetts Institute of Technology, Cambridge, MA, 1982 (Ph.D. thesis)
[17] From large N matrices to the noncommutative torus, Commun. Math. Phys., Volume 217 (2001), pp. 181-201
[18] Approximation of quantum tori by finite quantum tori for the quantum Gromov–Hausdorff distance, J. Funct. Anal., Volume 223 (2005), pp. 365-395
[19] An Introduction to Noncommutative Differential Geometry and Its Physical Applications, Cambridge University Press, Cambridge, UK, 1999
[20] Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, UK, 2000
[21] The Laplacian in a Riemannian Manifold, Lond. Math. Soc. Stud. Texts, vol. 31, Cambridge University Press, 1997
[22] Eigenvalues of the Laplacian and invariants of manifolds, Vancouver (1974)
Cité par Sources :
☆ The research is partially supported by the National Natural Science Foundation of China (No. 11301158, No. 11271111).