Complex analysis/Differential geometry
A note on the Bergman Kernel
[Sur le noyau de Bergman]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 121-125.

Il est connu que le noyau de Bergman associé à Lk, où L est un fibré en droite positif sur une variété complexe compacte, admet un développement asymptotique. Nous prouvons de manière élémentaire que le terme sous-principal de ce développement est donné par la courbure scalaire.

It is known that the Bergman kernel associated with Lk, where L is positive line bundle over a complex compact manifold, has an asymptotic expansion. We give an elementary proof of the fact that the subprincipal term of this expansion is the scalar curvature.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.11.007
Charles, Laurent 1

1 Institut de mathématiques de Jussieu-Paris rive gauche, 4, place Jussieu, 75252 Paris, France
@article{CRMATH_2015__353_2_121_0,
     author = {Charles, Laurent},
     title = {A note on the {Bergman} {Kernel}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {121--125},
     publisher = {Elsevier},
     volume = {353},
     number = {2},
     year = {2015},
     doi = {10.1016/j.crma.2014.11.007},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2014.11.007/}
}
TY  - JOUR
AU  - Charles, Laurent
TI  - A note on the Bergman Kernel
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 121
EP  - 125
VL  - 353
IS  - 2
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2014.11.007/
DO  - 10.1016/j.crma.2014.11.007
LA  - en
ID  - CRMATH_2015__353_2_121_0
ER  - 
%0 Journal Article
%A Charles, Laurent
%T A note on the Bergman Kernel
%J Comptes Rendus. Mathématique
%D 2015
%P 121-125
%V 353
%N 2
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2014.11.007/
%R 10.1016/j.crma.2014.11.007
%G en
%F CRMATH_2015__353_2_121_0
Charles, Laurent. A note on the Bergman Kernel. Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 121-125. doi : 10.1016/j.crma.2014.11.007. http://archive.numdam.org/articles/10.1016/j.crma.2014.11.007/

[1] Berman, Robert; Berndtsson, Bo; Sjöstrand, Johannes A direct approach to Bergman kernel asymptotics for positive line bundles, Ark. Mat., Volume 46 (2008) no. 2, pp. 197-217

[2] Berndtsson, B. Bergman kernels related to Hermitian line bundles over compact complex manifolds, Explorations in Complex and Riemannian Geometry, Contemp. Math., vol. 332, 2003, pp. 1-17

[3] Bouche, Thierry Convergence de la métrique de Fubini–Study d'un fibré linéaire positif, Ann. Inst. Fourier (Grenoble), Volume 40 (1990) no. 1, pp. 117-130

[4] Boutet de Monvel, L.; Sjöstrand, J. Sur la singularité des noyaux de Bergman et de Szegő, Journées: Équations aux dérivées partielles de Rennes (1975), Astérisque, vols. 34–35, Soc. Math. France, Paris, 1976, pp. 123-164

[5] Catlin, David The Bergman kernel and a theorem of Tian, Katata, 1997 (Trends Math.), Birkhäuser Boston, Boston, MA, USA (1999), pp. 1-23

[6] Charles, L. Berezin–Toeplitz operators, a semi-classical approach, Commun. Math. Phys., Volume 239 (2003) no. 1–2, pp. 1-28

[7] Charles, L. Quasimodes and Bohr–Sommerfeld conditions for the Toeplitz operators, Comm. Partial Differential Equations, Volume 28 (2003) no. 9–10, pp. 1527-1566

[8] Charles, L. Symbolic calculus for Toeplitz operators with half-form, J. Symplectic Geom., Volume 4 (2006) no. 2, pp. 171-198

[9] Dai, Xianzhe; Liu, Kefeng; Ma, Xiaonan On the asymptotic expansion of Bergman kernel, J. Differential Geom., Volume 72 (2006) no. 1, pp. 1-41

[10] Demailly, Jean-Pierre Multiplier ideal sheaves and analytic methods in algebraic geometry, Trieste, Italy, 2000 (ICTP Lect. Notes), Volume vol. 6, Abdus Salam Int. Cent. Theoret. Phys. (2001), pp. 1-148

[11] Donaldson, S.K. Scalar curvature and projective embeddings. I, J. Differential Geom., Volume 59 (2001) no. 3, pp. 479-522

[12] Donaldson, S.K. Discussion of the Kähler–Einstein problem, 2009 http://wwwf.imperial.ac.uk/?skdona/KENOTES.PDF

[13] Fine, Joel Quantization and the Hessian of Mabuchi energy, Duke Math. J., Volume 161 (2012) no. 14, pp. 2753-2798

[14] Hörmander, Lars The analysis of linear partial differential operators. I, Distribution Theory and Fourier Analysis, Grundlehren Math. Wiss., Fundamental Principles of Mathematical Sciences, vol. 256, Springer-Verlag, Berlin, 1990

[15] Lu, Zhiqin On the lower-order terms of the asymptotic expansion of Tian–Yau–Zelditch, Amer. J. Math., Volume 122 (2000) no. 2, pp. 235-273

[16] Ma, Xiaonan; Marinescu, G. Holomorphic Morse Inequalities and Bergman Kernels, Prog. Math., vol. 254, Birkhäuser Verlag, Basel, Switzerland, 2007

[17] Ma, Xiaonan; Marinescu, G. Generalized Bergman kernels on symplectic manifolds, Adv. Math., Volume 217 (2008) no. 4, pp. 1756-1815

[18] Ma, Xiaonan; Marinescu, G. Berezin–Toeplitz quantization on Kähler manifolds, J. Reine Angew. Math., Volume 662 (2012), pp. 1-56

[19] Tian, Gang On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., Volume 32 (1990) no. 1, pp. 99-130

[20] Xu, Hao A closed formula for the asymptotic expansion of the Bergman kernel, Commun. Math. Phys., Volume 314 (2012) no. 3, pp. 555-585

[21] Zelditch, S. Szegő kernels and a theorem of Tian, Int. Math. Res. Not., Volume 6 (1998), pp. 317-331

Cité par Sources :