Dans cette Note, nous considérons l'équation eikonale en une dimension d'espace décrivant le mouvement d'interfaces avec une vitesse non signée. Nous prouvons un résultat d'existence globale de solutions de viscosité discontinues dans un sens faible en considérant des données initiales BV.
In this Note, we consider the eikonal equation in one-dimensional space describing the evolution of interfaces moving with non-signed velocity. We prove a global existence result of discontinuous viscosity solutions in a weak sense by considering BV initial data.
Accepté le :
Publié le :
@article{CRMATH_2015__353_2_133_0, author = {Boudjerada, Rachida and El Hajj, Ahmad and Moulay, Mohamed Said}, title = {Existence result for a one-dimensional eikonal equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {133--137}, publisher = {Elsevier}, volume = {353}, number = {2}, year = {2015}, doi = {10.1016/j.crma.2014.11.008}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2014.11.008/} }
TY - JOUR AU - Boudjerada, Rachida AU - El Hajj, Ahmad AU - Moulay, Mohamed Said TI - Existence result for a one-dimensional eikonal equation JO - Comptes Rendus. Mathématique PY - 2015 SP - 133 EP - 137 VL - 353 IS - 2 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2014.11.008/ DO - 10.1016/j.crma.2014.11.008 LA - en ID - CRMATH_2015__353_2_133_0 ER -
%0 Journal Article %A Boudjerada, Rachida %A El Hajj, Ahmad %A Moulay, Mohamed Said %T Existence result for a one-dimensional eikonal equation %J Comptes Rendus. Mathématique %D 2015 %P 133-137 %V 353 %N 2 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2014.11.008/ %R 10.1016/j.crma.2014.11.008 %G en %F CRMATH_2015__353_2_133_0
Boudjerada, Rachida; El Hajj, Ahmad; Moulay, Mohamed Said. Existence result for a one-dimensional eikonal equation. Comptes Rendus. Mathématique, Tome 353 (2015) no. 2, pp. 133-137. doi : 10.1016/j.crma.2014.11.008. http://archive.numdam.org/articles/10.1016/j.crma.2014.11.008/
[1] Existence and uniqueness for dislocation dynamics with nonnegative velocity, Interfaces Free Bound., Volume 7 (2005), pp. 415-434
[2] Dislocation dynamics: short-time existence and uniqueness of the solution, Arch. Ration. Mech. Anal., Volume 181 (2006), pp. 449-504
[3] Solutions de viscosité des équations de Hamilton–Jacobi, Mathématiques et Applications (Berlin), Mathematics & Applications, vol. 17, Springer-Verlag, Paris, 1994
[4] Nonlocal first-order Hamilton–Jacobi equations modelling dislocations dynamics, Commun. Partial Differ. Equ., Volume 31 (2006), pp. 1191-1208
[5] Comparison principle for Dirichlet-type Hamilton–Jacobi equations and singular perturbations of degenerated elliptic equations, Appl. Math. Optim., Volume 21 (1990), pp. 21-44
[6] Front propagation and phase field theory, SIAM J. Control Optim., Volume 31 (1993), pp. 439-496
[7] Global existence results and uniqueness for dislocation equations, SIAM J. Math. Anal., Volume 40 (2008), pp. 44-69
[8] Lower bound gradient estimates for first-order Hamilton–Jacobi equations and applications to the regularity of propagation fronts, Adv. Differ. Equ., Volume 6 (2001), pp. 547-576
[9] Compacts sets in the space , Ann. Mat. Pura Appl. (4), Volume 146 (1987), pp. 65-96
Cité par Sources :