Number theory/Algebraic geometry
On Deligne's periods for tensor product motives
[Sur les périodes de Deligne des motifs produits tensoriels]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 3, pp. 191-195.

Nous décrivons dans cette Note les périodes de Deligne c± des produits tensoriels MM de motifs purs sur Q, en termes des périodes des motifs M et M et des invariants qui leur sont attachés par Yoshida. Les relations de périodes établies antérieurement par l'auteur et Raghuram résultent de cette description.

In this paper, we give a description of Deligne's periods c± for a tensor product of pure motives MM over Q in terms of the period invariants attached to M and M by Yoshida [8]. The period relations proved by the author and Raghuram in an earlier paper follow from the results of this paper.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.11.016
Bhagwat, Chandrasheel 1

1 Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
@article{CRMATH_2015__353_3_191_0,
     author = {Bhagwat, Chandrasheel},
     title = {On {Deligne's} periods for tensor product motives},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {191--195},
     publisher = {Elsevier},
     volume = {353},
     number = {3},
     year = {2015},
     doi = {10.1016/j.crma.2014.11.016},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2014.11.016/}
}
TY  - JOUR
AU  - Bhagwat, Chandrasheel
TI  - On Deligne's periods for tensor product motives
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 191
EP  - 195
VL  - 353
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2014.11.016/
DO  - 10.1016/j.crma.2014.11.016
LA  - en
ID  - CRMATH_2015__353_3_191_0
ER  - 
%0 Journal Article
%A Bhagwat, Chandrasheel
%T On Deligne's periods for tensor product motives
%J Comptes Rendus. Mathématique
%D 2015
%P 191-195
%V 353
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2014.11.016/
%R 10.1016/j.crma.2014.11.016
%G en
%F CRMATH_2015__353_3_191_0
Bhagwat, Chandrasheel. On Deligne's periods for tensor product motives. Comptes Rendus. Mathématique, Tome 353 (2015) no. 3, pp. 191-195. doi : 10.1016/j.crma.2014.11.016. http://archive.numdam.org/articles/10.1016/j.crma.2014.11.016/

[1] Bhagwat, C.; Raghuram, A. Ratios of periods for tensor product motives, Math. Res. Lett., Volume 20 (2013) no. 4, pp. 615-628

[2] Clozel, L. Motifs et formes automorphes: applications du principe de fonctorialité, Ann Arbor, MI, 1988 (Clozel, L.; Milne, J.S., eds.) (Perspect. Math.), Volume vol. 10, Academic Press, Boston, MA (1990), pp. 77-159

[3] Deligne, P. Valeurs de fonctions L et périodes d'intégrales, Proc. Sympos. Pure Math., vol. XXXIII, part II, American Mathematical Society, Providence, RI, USA, 1979, pp. 313-346 (With an appendix by N. Koblitz and A. Ogus)

[4] Grobner, H.; Harris, M. Whittaker periods, motivic periods, and special values of tensor product L-functions (Preprint, 2013, available at) | arXiv

[5] Raghuram, A. On the special values of certain Rankin–Selberg L-functions and applications to odd symmetric power L-functions of modular forms, Int. Math. Res. Not. (2010), pp. 334-372 | DOI

[6] A. Raghuram, Critical values of Rankin–Selberg L-functions for GLn×GLn1 and the symmetric cube L-functions for GL2, Preprint, 2014.

[7] Raghuram, A.; Shahidi, F. On certain period relations for cusp forms on GLn, Int. Math. Res. Not. (2008) | DOI

[8] Yoshida, H. Motives and Siegel modular forms, Amer. J. Math., Volume 123 (2001), pp. 1171-1197

Cité par Sources :