Algebraic geometry
The stability of Frobenius direct images of rank-two bundles over surfaces
[La stabilité de l'image directe de Frobenius des fibrés de rang deux sur des surfaces]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 339-344.

Soit X une surface projective lisse sur un corps algébriquement clos k de caractéristique p5 avec ΩX1 semistable et μ(ΩX1)>0. Étant donné un fibré vectoriel semistable (resp. stable) W de rang 2 sur X, on montre que l'image directe FW par le morphisme de Frobenius F est aussi semistable (resp. stable).

Let X be a smooth projective surface over an algebraically closed field k of characteristic p5 with ΩX1 semistable and μ(ΩX1)>0. Given a semistable (resp. stable) vector bundle W of rank 2, we prove that the direct image FW under the Frobenius morphism F is also semistable (resp. stable).

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2014.12.001
Liu, Congjun 1 ; Zhou, Mingshuo 2

1 Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, PR China
2 School of Science, Hangzhou Dianzi University, Hangzhou 310018, PR China
@article{CRMATH_2015__353_4_339_0,
     author = {Liu, Congjun and Zhou, Mingshuo},
     title = {The stability of {Frobenius} direct images of rank-two bundles over surfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {339--344},
     publisher = {Elsevier},
     volume = {353},
     number = {4},
     year = {2015},
     doi = {10.1016/j.crma.2014.12.001},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2014.12.001/}
}
TY  - JOUR
AU  - Liu, Congjun
AU  - Zhou, Mingshuo
TI  - The stability of Frobenius direct images of rank-two bundles over surfaces
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 339
EP  - 344
VL  - 353
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2014.12.001/
DO  - 10.1016/j.crma.2014.12.001
LA  - en
ID  - CRMATH_2015__353_4_339_0
ER  - 
%0 Journal Article
%A Liu, Congjun
%A Zhou, Mingshuo
%T The stability of Frobenius direct images of rank-two bundles over surfaces
%J Comptes Rendus. Mathématique
%D 2015
%P 339-344
%V 353
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2014.12.001/
%R 10.1016/j.crma.2014.12.001
%G en
%F CRMATH_2015__353_4_339_0
Liu, Congjun; Zhou, Mingshuo. The stability of Frobenius direct images of rank-two bundles over surfaces. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 339-344. doi : 10.1016/j.crma.2014.12.001. http://archive.numdam.org/articles/10.1016/j.crma.2014.12.001/

[1] Huybrechts, D.; Lehn, M. The Geometry of Moduli Spaces of Sheaves, Aspects Math., vol. 31, Friedr, Vieweg Sohn, Braunschweig, 1997

[2] Joshi, K.; Ramanan, S.; Xia, E.; Yu, J.-K. On vector bundles destabilized by Frobenius pull-back, Compositio Math., Volume 142 (2006) no. 3, pp. 616-630

[3] Kitadai, Y.; Sumihiro, H. Canonical filtrations and stability of direct images by Frobenius morphism II, Hiroshima Math. J., Volume 38 (2008), pp. 243-261

[4] Langer, A. Semistable sheaves in positive characteristic, Ann. of Math. (2), Volume 159 (2004), pp. 251-276

[5] Li, L.; Yu, F. Instability of truncated symmetric powers of sheaves, J. Algebra, Volume 386 (2013), pp. 176-189

[6] Sun, X. Direct images of bundles under Frobenius morphism, Invent. Math., Volume 173 (2008), pp. 427-447

[7] Sun, X. Frobenius morphism and semistable bundles, Algebraic Geometry in East Asia (2008), pp. 161-182

Cité par Sources :