Dans cette Note, nous étudions l'existence locale des solutions pour l'équation du scalaire actif
We address the local well-posedness for the active scalar equation
Accepté le :
Publié le :
@article{CRMATH_2015__353_3_241_0, author = {Hu, Weiwei and Kukavica, Igor and Ziane, Mohammed}, title = {Sur l'existence locale pour une \'equation de scalaires actifs}, journal = {Comptes Rendus. Math\'ematique}, pages = {241--245}, publisher = {Elsevier}, volume = {353}, number = {3}, year = {2015}, doi = {10.1016/j.crma.2014.12.008}, language = {fr}, url = {https://www.numdam.org/articles/10.1016/j.crma.2014.12.008/} }
TY - JOUR AU - Hu, Weiwei AU - Kukavica, Igor AU - Ziane, Mohammed TI - Sur l'existence locale pour une équation de scalaires actifs JO - Comptes Rendus. Mathématique PY - 2015 SP - 241 EP - 245 VL - 353 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.crma.2014.12.008/ DO - 10.1016/j.crma.2014.12.008 LA - fr ID - CRMATH_2015__353_3_241_0 ER -
%0 Journal Article %A Hu, Weiwei %A Kukavica, Igor %A Ziane, Mohammed %T Sur l'existence locale pour une équation de scalaires actifs %J Comptes Rendus. Mathématique %D 2015 %P 241-245 %V 353 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.crma.2014.12.008/ %R 10.1016/j.crma.2014.12.008 %G fr %F CRMATH_2015__353_3_241_0
Hu, Weiwei; Kukavica, Igor; Ziane, Mohammed. Sur l'existence locale pour une équation de scalaires actifs. Comptes Rendus. Mathématique, Tome 353 (2015) no. 3, pp. 241-245. doi : 10.1016/j.crma.2014.12.008. https://www.numdam.org/articles/10.1016/j.crma.2014.12.008/
[1] Logarithmically regularized inviscid models in borderline Sobolev spaces, J. Math. Phys., Volume 53 (2012) no. 11, p. 115601 (15)
[2] Inviscid models generalizing the two-dimensional Euler and the surface quasi-geostrophic equations, Arch. Ration. Mech. Anal., Volume 202 (2011) no. 1, pp. 35-62
[3] Generalized surface quasi-geostrophic equations with singular velocities, Commun. Pure Appl. Math., Volume 65 (2012) no. 8, pp. 1037-1066
[4] Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, Volume 7 (1994) no. 6, pp. 1495-1533
[5] Global well-posedness for a slightly supercritical surface quasi-geostrophic equation, Nonlinearity, Volume 25 (2012) no. 5, pp. 1525-1535
[6] Commutator estimates and the Euler and Navier–Stokes equations, Commun. Pure Appl. Math., Volume 41 (1988) no. 7, pp. 891-907
[7] Vorticity and Incompressible Flow, Cambridge Texts Appl. Math., vol. 27, Cambridge University Press, Cambridge, 2002
[8] Eventual regularization for the slightly supercritical quasi-geostrophic equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 27 (2010) no. 2, pp. 693-704
[9] Harmonic analysis http://www.math.ucla.edu/~tao (Winter '07, Notes 6)
- On the locally self-similar blowup for the generalized SQG equation, Journal of Differential Equations, Volume 415 (2025), p. 266 | DOI:10.1016/j.jde.2024.09.025
- Long-time asymptotic behavior of the generalized two-dimensional quasi-geostrophic equation, Journal of Functional Analysis, Volume 283 (2022) no. 10, p. 109669 | DOI:10.1016/j.jfa.2022.109669
- On the Existence, Uniqueness, and Smoothing of Solutions to the Generalized SQG Equations in Critical Sobolev Spaces, Communications in Mathematical Physics, Volume 387 (2021) no. 1, p. 551 | DOI:10.1007/s00220-021-04124-9
- Local well-posedness for the generalized surface quasi-geostrophic equation with singular velocity in optimal space, Journal of Mathematical Analysis and Applications, Volume 443 (2016) no. 2, p. 765 | DOI:10.1016/j.jmaa.2016.05.058
Cité par 4 documents. Sources : Crossref