Nous étudions les structures des vortex qui minimisent l'énergie renormalisée reliée au modèle de Ginzburg–Landau. Parmi tous les réseaux de Bravais, nous prouvons que le réseaux triangulaire minimise cette énergie renormalisée.
We study the configuration of vortices that minimize a renormalized energy related to the Ginzburg–Landau model. Among all the Bravais lattices, we prove that the triangular lattice minimizes this renormalized energy.
Accepté le :
Publié le :
@article{CRMATH_2015__353_3_255_0, author = {Zhang, Peng}, title = {On the minimizer of a renormalized energy related to the {Ginzburg{\textendash}Landau} model}, journal = {Comptes Rendus. Math\'ematique}, pages = {255--260}, publisher = {Elsevier}, volume = {353}, number = {3}, year = {2015}, doi = {10.1016/j.crma.2015.01.001}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.01.001/} }
TY - JOUR AU - Zhang, Peng TI - On the minimizer of a renormalized energy related to the Ginzburg–Landau model JO - Comptes Rendus. Mathématique PY - 2015 SP - 255 EP - 260 VL - 353 IS - 3 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2015.01.001/ DO - 10.1016/j.crma.2015.01.001 LA - en ID - CRMATH_2015__353_3_255_0 ER -
%0 Journal Article %A Zhang, Peng %T On the minimizer of a renormalized energy related to the Ginzburg–Landau model %J Comptes Rendus. Mathématique %D 2015 %P 255-260 %V 353 %N 3 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2015.01.001/ %R 10.1016/j.crma.2015.01.001 %G en %F CRMATH_2015__353_3_255_0
Zhang, Peng. On the minimizer of a renormalized energy related to the Ginzburg–Landau model. Comptes Rendus. Mathématique, Tome 353 (2015) no. 3, pp. 255-260. doi : 10.1016/j.crma.2015.01.001. http://archive.numdam.org/articles/10.1016/j.crma.2015.01.001/
[1] On the magnetic properties of superconductors of the second group, Sov. Phys. JETP, Volume 5 (1957), pp. 1174-1182
[2] Lowest Landau level functional and Bargmann spaces for Bose–Einstein condensates, J. Funct. Anal., Volume 241 (2006) no. 2, pp. 661-702
[3] Lowest Landau level approach in superconductivity for the Abrikosov lattice close to , Sel. Math. New Ser., Volume 13 (2007) no. 2, pp. 183-202
[4] Vortex analysis of the periodic Ginzburg–Landau model, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009) no. 4, pp. 1223-1236
[5] Ginzburg–Landau Vortices, Progress in Nonlinear Differential Equations and Their Applications, vol. 13, Birkhäuser, Boston Inc., Boston, MA, USA, 1994
[6] An application of the modular function in nonlocal variational problems, Arch. Ration. Mech. Anal., Volume 186 (2007) no. 1, pp. 109-132
[7] Minimal theta functions, Glasg. Math. J., Volume 30 (1988) no. 1, pp. 75-85
[8] Extremals of determinants of Laplacians, J. Funct. Anal., Volume 80 (1988) no. 1, pp. 148-211
[9] From the Ginzburg–Landau model to vortex lattice problems, Commun. Math. Phys., Volume 313 (2012) no. 3, pp. 635-743
Cité par Sources :