Partial differential equations
On the minimizer of a renormalized energy related to the Ginzburg–Landau model
[Sur la minimisation de l'énergie renormalisée reliée au modèle de Ginzburg–Landau]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 3, pp. 255-260.

Nous étudions les structures des vortex qui minimisent l'énergie renormalisée reliée au modèle de Ginzburg–Landau. Parmi tous les réseaux de Bravais, nous prouvons que le réseaux triangulaire minimise cette énergie renormalisée.

We study the configuration of vortices that minimize a renormalized energy related to the Ginzburg–Landau model. Among all the Bravais lattices, we prove that the triangular lattice minimizes this renormalized energy.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.01.001
Zhang, Peng 1

1 Département de Mathématiques, Université Paris-Est (Créteil–Val-de-Marne), 61, avenue du Général-de-Gaulle, 94010 Céteil cedex, France
@article{CRMATH_2015__353_3_255_0,
     author = {Zhang, Peng},
     title = {On the minimizer of a renormalized energy related to the {Ginzburg{\textendash}Landau} model},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {255--260},
     publisher = {Elsevier},
     volume = {353},
     number = {3},
     year = {2015},
     doi = {10.1016/j.crma.2015.01.001},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.01.001/}
}
TY  - JOUR
AU  - Zhang, Peng
TI  - On the minimizer of a renormalized energy related to the Ginzburg–Landau model
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 255
EP  - 260
VL  - 353
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2015.01.001/
DO  - 10.1016/j.crma.2015.01.001
LA  - en
ID  - CRMATH_2015__353_3_255_0
ER  - 
%0 Journal Article
%A Zhang, Peng
%T On the minimizer of a renormalized energy related to the Ginzburg–Landau model
%J Comptes Rendus. Mathématique
%D 2015
%P 255-260
%V 353
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2015.01.001/
%R 10.1016/j.crma.2015.01.001
%G en
%F CRMATH_2015__353_3_255_0
Zhang, Peng. On the minimizer of a renormalized energy related to the Ginzburg–Landau model. Comptes Rendus. Mathématique, Tome 353 (2015) no. 3, pp. 255-260. doi : 10.1016/j.crma.2015.01.001. http://archive.numdam.org/articles/10.1016/j.crma.2015.01.001/

[1] Abrikosov, A.A. On the magnetic properties of superconductors of the second group, Sov. Phys. JETP, Volume 5 (1957), pp. 1174-1182

[2] Aftalion, A.; Blanc, X.; Nier, F. Lowest Landau level functional and Bargmann spaces for Bose–Einstein condensates, J. Funct. Anal., Volume 241 (2006) no. 2, pp. 661-702

[3] Aftalion, A.; Serfaty, S. Lowest Landau level approach in superconductivity for the Abrikosov lattice close to Hc2, Sel. Math. New Ser., Volume 13 (2007) no. 2, pp. 183-202

[4] Aydi, H.; Sandier, E. Vortex analysis of the periodic Ginzburg–Landau model, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009) no. 4, pp. 1223-1236

[5] Bethuel, F.; Brezis, H.; Hélein, F. Ginzburg–Landau Vortices, Progress in Nonlinear Differential Equations and Their Applications, vol. 13, Birkhäuser, Boston Inc., Boston, MA, USA, 1994

[6] Chen, X.F.; Oshita, Y. An application of the modular function in nonlocal variational problems, Arch. Ration. Mech. Anal., Volume 186 (2007) no. 1, pp. 109-132

[7] Montgomery, H.L. Minimal theta functions, Glasg. Math. J., Volume 30 (1988) no. 1, pp. 75-85

[8] Osgood, B.; Phillips, R.; Sarnak, P. Extremals of determinants of Laplacians, J. Funct. Anal., Volume 80 (1988) no. 1, pp. 148-211

[9] Sandier, E.; Serfaty, S. From the Ginzburg–Landau model to vortex lattice problems, Commun. Math. Phys., Volume 313 (2012) no. 3, pp. 635-743

Cité par Sources :