Nous caractérisons les plongements d-uples de Veronese d'espaces projectifs de dimension finie. L'instance non triviale la plus simple de notre théorème est le plongement du plan projectif dans un espace projectif de dimension 5, un résultat obtenu en 1901 par Severi lorsque le corps sous-jacent est le corps des nombres complexes.
We characterize d-uple Veronese embeddings of finite-dimensional projective spaces. The easiest non-trivial instance of our theorem is the embedding of the projective plane in a 5-dimensional projective space, a result obtained in 1901 by Severi when the underlying field is the field of complex numbers.
Accepté le :
Publié le :
@article{CRMATH_2015__353_4_333_0, author = {Schillewaert, Jeroen and Struyve, Koen}, title = {A characterization of \protect\emph{d}-uple {Veronese} varieties}, journal = {Comptes Rendus. Math\'ematique}, pages = {333--338}, publisher = {Elsevier}, volume = {353}, number = {4}, year = {2015}, doi = {10.1016/j.crma.2015.01.002}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.01.002/} }
TY - JOUR AU - Schillewaert, Jeroen AU - Struyve, Koen TI - A characterization of d-uple Veronese varieties JO - Comptes Rendus. Mathématique PY - 2015 SP - 333 EP - 338 VL - 353 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2015.01.002/ DO - 10.1016/j.crma.2015.01.002 LA - en ID - CRMATH_2015__353_4_333_0 ER -
%0 Journal Article %A Schillewaert, Jeroen %A Struyve, Koen %T A characterization of d-uple Veronese varieties %J Comptes Rendus. Mathématique %D 2015 %P 333-338 %V 353 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2015.01.002/ %R 10.1016/j.crma.2015.01.002 %G en %F CRMATH_2015__353_4_333_0
Schillewaert, Jeroen; Struyve, Koen. A characterization of d-uple Veronese varieties. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 333-338. doi : 10.1016/j.crma.2015.01.002. http://archive.numdam.org/articles/10.1016/j.crma.2015.01.002/
[1] Proprietà differenziali carracteristiche di enti algebrici, Rom. Acc. L. Mem., Volume 26 (1921), pp. 452-474
[2] On the uniqueness of -arcs of , , , Discrete Math., Volume 48 (1984), pp. 173-186
[3] The non-classical 10-arc of , Discrete Math., Volume 59 (1986), pp. 43-51
[4] Algebraic Geometry: A First Course, Graduate Texts in Mathematics, vol. 133, Springer-Verlag, New York, 1992
[5] General Galois Geometries, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1991
[6] Veroneseans, power subspaces and independence, Adv. Geom., Volume 13 (2013), pp. 511-531
[7] Topics in the Geometry of Projective Space, Recent Work of F.L. Zak, Birkhäuser Verlag, Basel, Boston, Massachusetts, 1984
[8] Considerazioni arithmetiche e risultati sperimentali sui arch, Rend. - Ist. Lomb., Accad. Sci. Lett., a Sci. Mat. Fis. Chim. Geol., Volume 98 (1964), pp. 3-52
[9] Caps and Veronese varieties in projective Galois spaces, Discrete Math., Volume 48 (1984), pp. 243-252
[10] A tour through some classical theorems on algebraic surfaces, An. Univ. “Ovidius” Constanţa, Ser. Mat., Volume 5 (1997), pp. 51-78
[11] Sui sistemi di piani a due a due incidenti, Atti Reale Ist. Veneto Sci. Lett. Arti, Volume LXXXIX (1930), pp. 907-926
[12] Varieties n-covered by curves of degree δ, Comment. Math. Helv., Volume 88 (2013), pp. 715-757
[13] Sur les variétés telles que par n points passe une courbe de X de degré donné, Bull. Soc. Math. Fr., Volume 141 (2013), pp. 131-195
[14] Quadric Veronesean caps, Bull. Belg. Math. Soc. Simon Stevin, Volume 20 (2013), pp. 19-25
[15] Le superficie degli iperspazi con una doppia infinità di curve piano o spaziali, Atti R. Accad. Sci. Torino, Volume 56 (1921), pp. 75-89 (also in: Opere, Vol. II, XXXIII, 163–175)
[16] Curve razionali normali e k-archi negli spazi finiti, Ann. Mat. Pura Appl., Volume 39 (1955), pp. 357-379
[17] Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a suoi punti tripli apparenti, Rend. Circ. Mat. Palermo, Volume 15 (1901), pp. 33-51
[18] Basic Algebraic Geometry, I, Springer-Verlag, 1994
[19] Classification of finite Veronesean caps, Eur. J. Comb., Volume 25 (2004), pp. 275-285
[20] Geometrie der Lage, Verlag von Bauer und Raspe (Julius Merz), Nuremberg, Germany, 1847
[21] Tangents and Secants of Algebraic Varieties, Translation of Mathematical Monographs, AMS, 1983
Cité par Sources :