Partial differential equations
Null controllability for the semilinear heat equation in a non-smooth domain
[Nulle contrôlabilité de l'équation de la chaleur semilinéaire dans un domaine non régulier]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 3, pp. 229-234.

Dans ce travail, on donne un résultat de nulle contrôlabilité pour l'équation de la chaleur semi-linéaire dans un domaine borné de R2, polygonal ou fissuré. On suppose que la non-linearité croît moins vite que |s|log3/2(1+|s|) quand |s|, et on démontre le résultat par le théorème du point fixe de Schauder.

In this work we give a null-controllability result for the semi-linear heat equation in a polygonal or cracked bounded domain of R2. We suppose that the nonlinearity grows slower than |s|log3/2(1+|s|) as |s| and then we prove our result by using Schauder's fixed point theorem.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.01.005
Ali-Ziane, Tarik 1 ; Ferhoune, Zahia 1 ; Zair, Ouahiba 1

1 Laboratoire AMNEDP, Faculté de Mathématiques, USTHB, BP 32, El-Alia, 16111 Alger, Algeria
@article{CRMATH_2015__353_3_229_0,
     author = {Ali-Ziane, Tarik and Ferhoune, Zahia and Zair, Ouahiba},
     title = {Null controllability for the semilinear heat equation in a non-smooth domain},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {229--234},
     publisher = {Elsevier},
     volume = {353},
     number = {3},
     year = {2015},
     doi = {10.1016/j.crma.2015.01.005},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.01.005/}
}
TY  - JOUR
AU  - Ali-Ziane, Tarik
AU  - Ferhoune, Zahia
AU  - Zair, Ouahiba
TI  - Null controllability for the semilinear heat equation in a non-smooth domain
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 229
EP  - 234
VL  - 353
IS  - 3
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2015.01.005/
DO  - 10.1016/j.crma.2015.01.005
LA  - en
ID  - CRMATH_2015__353_3_229_0
ER  - 
%0 Journal Article
%A Ali-Ziane, Tarik
%A Ferhoune, Zahia
%A Zair, Ouahiba
%T Null controllability for the semilinear heat equation in a non-smooth domain
%J Comptes Rendus. Mathématique
%D 2015
%P 229-234
%V 353
%N 3
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2015.01.005/
%R 10.1016/j.crma.2015.01.005
%G en
%F CRMATH_2015__353_3_229_0
Ali-Ziane, Tarik; Ferhoune, Zahia; Zair, Ouahiba. Null controllability for the semilinear heat equation in a non-smooth domain. Comptes Rendus. Mathématique, Tome 353 (2015) no. 3, pp. 229-234. doi : 10.1016/j.crma.2015.01.005. http://archive.numdam.org/articles/10.1016/j.crma.2015.01.005/

[1] Aronson, D.G.; Serrin, J. Local behavior of solutions of quasilinear parabolic equations, Arch. Ration. Mech. Anal., Volume 25 (1967), pp. 81-122

[2] Belghazi, A.H.; Smadhi, F.; Zaidi, N.; Zair, O. Carleman inequalities for the two-dimensional heat equation in singular domains, Math. Control Relat. Fields, Volume 2 (2012) no. 4, pp. 331-359

[3] Doubova, A.; Osses, A.; Puel, J.-P. Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients, ESAIM Control Optim. Calc. Var., Volume 8 (2002), pp. 621-661

[4] Fabre, C.; Puel, J.-P.; Zuazua, E. On the density of the range of the semigroup for semilinear heat equations, Minneapolis, MN, 1992 (IMA Vol. Math. Appl.), Volume vol. 70, Springer, New York (1995), pp. 73-91

[5] Fernández-Cara, E.; Zuazua, E. Null and approximate controllability for weakly blowing-up semilinear heat equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 17 (2000) no. 5, pp. 583-616

[6] Grisvard, P. Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, USA, 1985

[7] Grisvard, P. Singularities in Boundary Value Problems, Recherches en mathématiques appliquées, Research in Applied Mathematics, vol. 22, Masson, Paris, 1992

[8] Moussaoui, M.A.; Sadallah, B.K. Régularité des coefficients de propagation de singularités pour l'équation de la chaleur dans un ouvert plan polygonal, C. R. Acad. Sci. Paris, Ser. I, Volume 293 (1981) no. 5, pp. 297-300

[9] Zuazua, E. Approximate controllability for semilinear heat equations with globally Lipschitz nonlinearities, Control Cybern., Volume 28 (1999) no. 3, pp. 665-683

Cité par Sources :