Cet article donne des bornes supérieures pour la dimension de la catégorie de singularité d'un anneau local Cohen–Macaulay à singularité isolée. L'une de nos estimations redonne une borne fournie par Ballard, Favero et Katzarkov dans le cas des hypersurfaces.
This paper gives upper bounds for the dimension of the singularity category of a Cohen–Macaulay local ring with an isolated singularity. One of them recovers an upper bound given by Ballard, Favero and Katzarkov in the case of a hypersurface.
Accepté le :
Publié le :
@article{CRMATH_2015__353_4_297_0, author = {Dao, Hailong and Takahashi, Ryo}, title = {Upper bounds for dimensions of singularity categories}, journal = {Comptes Rendus. Math\'ematique}, pages = {297--301}, publisher = {Elsevier}, volume = {353}, number = {4}, year = {2015}, doi = {10.1016/j.crma.2015.01.012}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.01.012/} }
TY - JOUR AU - Dao, Hailong AU - Takahashi, Ryo TI - Upper bounds for dimensions of singularity categories JO - Comptes Rendus. Mathématique PY - 2015 SP - 297 EP - 301 VL - 353 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2015.01.012/ DO - 10.1016/j.crma.2015.01.012 LA - en ID - CRMATH_2015__353_4_297_0 ER -
%0 Journal Article %A Dao, Hailong %A Takahashi, Ryo %T Upper bounds for dimensions of singularity categories %J Comptes Rendus. Mathématique %D 2015 %P 297-301 %V 353 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2015.01.012/ %R 10.1016/j.crma.2015.01.012 %G en %F CRMATH_2015__353_4_297_0
Dao, Hailong; Takahashi, Ryo. Upper bounds for dimensions of singularity categories. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 297-301. doi : 10.1016/j.crma.2015.01.012. http://archive.numdam.org/articles/10.1016/j.crma.2015.01.012/
[1] Generators and dimensions of derived categories, Commun. Algebra (2015) (in press) | arXiv
[2] Orlov spectra: bounds and gaps, Invent. Math., Volume 189 (2012) no. 2, pp. 359-430
[3] Dimensions of triangulated categories via Koszul objects, Math. Z., Volume 265 (2010) no. 4, pp. 849-864
[4] Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J., Volume 3 (2003) no. 1, pp. 1-36 (258)
[5] Cohen–Macaulay Rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, UK, 1998
[6] Maximal Cohen–Macaulay modules and Tate-cohomology over Gorenstein rings, 1986 http://hdl.handle.net/1807/16682 (Preprint)
[7] Ideals in triangulated categories: phantoms, ghosts and skeleta, Adv. Math., Volume 136 (1998) no. 2, pp. 284-339
[8] Rouquier's theorem on representation dimension, Trends in Representation Theory of Algebras and Related Topics, Contemp. Math., vol. 406, 2006, pp. 95-103
[9] Triangulated categories of singularities and D-branes in Landau–Ginzburg models, Proc. Steklov Inst. Math., Volume 246 (2004) no. 3, pp. 227-248
[10] Triangulated categories of singularities, and equivalences between Landau–Ginzburg models, Sb. Math., Volume 197 (2006) no. 11–12, pp. 1827-1840
[11] Derived categories of coherent sheaves and triangulated categories of singularities, Algebra, Arithmetic, and Geometry: In Honor of Yu.I. Manin. Vol. II, Progress in Mathematics, vol. 270, Birkhäuser Boston, Inc., Boston, MA, USA, 2009, pp. 503-531
[12] Formal completions and idempotent completions of triangulated categories of singularities, Adv. Math., Volume 226 (2011) no. 1, pp. 206-217
[13] Dimensions of triangulated categories, J. K-Theory, Volume 1 (2008), pp. 193-256
[14] On the Fitting ideals in free resolutions, Mich. Math. J., Volume 41 (1994) no. 3, pp. 587-608
[15] Cohen–Macaulay Modules over Cohen–Macaulay Rings, London Mathematical Society Lecture Note Series, vol. 146, Cambridge University Press, Cambridge, 1990
Cité par Sources :