Mathematical analysis/Complex analysis
Extended τ-hypergeometric functions and associated properties
[Fonctions τ-hypergéométriques étendues et leurs propriétés]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 5, pp. 421-426.

Récemment, une extension du symbole de Pochhammer a été utilisée pour introduire et étudier une famille de fonctions hypergéométriques généralisées [Srivastava et al. (2014) [11]]. L'objet de cette Note est de présenter une extension des fonctions τ-hypergéométriques de Gauss R1τ2(z) et d'étudier plusieurs de leurs propriétés, incluant, par exemple, leurs représentations intégrales, les formules de dérivées, les transformées de Mellin et les opérateurs de calcul fractionnaire. Quelques cas particuliers intéressants de nos résultats principaux sont également signalés.

Recently, an extension of the Pochhammer symbol was used in order to introduce and investigate a family of generalized hypergeometric functions [Srivastava et al. (2014) [11]]. The main object of this paper is to present an extension of the τ-Gauss hypergeometric functions R1τ2(z) and investigate its several properties, including, for example, its integral representations, derivative formulas, Mellin transforms and fractional calculus operators. Some interesting special cases of our main results are also pointed out.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.01.016
Parmar, Rakesh K. 1

1 Department of Mathematics, Government College of Engineering and Technology, Bikaner 334004, Rajasthan State, India
@article{CRMATH_2015__353_5_421_0,
     author = {Parmar, Rakesh K.},
     title = {Extended \protect\emph{\ensuremath{\tau}}-hypergeometric functions and associated properties},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {421--426},
     publisher = {Elsevier},
     volume = {353},
     number = {5},
     year = {2015},
     doi = {10.1016/j.crma.2015.01.016},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.01.016/}
}
TY  - JOUR
AU  - Parmar, Rakesh K.
TI  - Extended τ-hypergeometric functions and associated properties
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 421
EP  - 426
VL  - 353
IS  - 5
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2015.01.016/
DO  - 10.1016/j.crma.2015.01.016
LA  - en
ID  - CRMATH_2015__353_5_421_0
ER  - 
%0 Journal Article
%A Parmar, Rakesh K.
%T Extended τ-hypergeometric functions and associated properties
%J Comptes Rendus. Mathématique
%D 2015
%P 421-426
%V 353
%N 5
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2015.01.016/
%R 10.1016/j.crma.2015.01.016
%G en
%F CRMATH_2015__353_5_421_0
Parmar, Rakesh K. Extended τ-hypergeometric functions and associated properties. Comptes Rendus. Mathématique, Tome 353 (2015) no. 5, pp. 421-426. doi : 10.1016/j.crma.2015.01.016. http://archive.numdam.org/articles/10.1016/j.crma.2015.01.016/

[1] Chaudhry, M.A.; Zubair, S.M. Generalized incomplete gamma functions with applications, J. Comput. Appl. Math., Volume 55 (1994), pp. 99-124

[2] Chaudhry, M.A.; Qadir, A.; Raflque, M.; Zubair, S.M. Extension of Euler's Beta function, J. Comput. Appl. Math., Volume 78 (1997), pp. 19-32

[3] Chaudhry, M.A.; Qadir, A.; Srivastava, H.M.; Paris, R.B. Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., Volume 159 (2004), pp. 589-602

[4] Chaudhry, M.A.; Zubair, S.M. On a Class of Incomplete Gamma Functions with Applications, CRC Press (Chapman and Hall), Boca Raton, FL, USA, 2002

[5] Ozergin, Ë.; Özarslan, M.A.; Altın, A. Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math., Volume 235 (2011), pp. 4601-4610

[6] Dotsenko, M. On some applications of Wright's hypergeometric function, C. R. Acad. Bulg. Sci., Volume 44 (1991), pp. 13-16

[7] Galué, L.; Al-Zamel, A.; Kalla, S.L. Further results on generalized hypergeometric functions, Appl. Math. Comput., Volume 136 (2003), pp. 17-25

[8] Malovichko, V. On a generalized hypergeometric function and some integral operators, Math. Phys., Volume 19 (1976), pp. 99-103

[9] Rainville, E.D. Special Functions, Macmillan Company, New York, 1960 (Reprinted by Chelsea Publishing Company, Bronx, New York, 1971)

[10] Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon et al., 1993

[11] Srivastava, H.M.; Çetinkaya, A.; Onur Kıyamaz, İ. A Certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput., Volume 226 (2014), pp. 484-491

[12] Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1985

[13] Srivastava, H.M.; Parmar, Rakesh K.; Chopra, P. A class of extended fractional derivative operators and associated generating relations involving hypergeometric functions, Axioms, Volume 1 (2012), pp. 238-258

[14] Srivastava, R. Some generalizations of Pochhammer's symbol and their associated families of hypergeometric functions and hypergeometric polynomials, Appl. Math. Inf. Sci., Volume 7 (2013), pp. 2195-2206

[15] Srivastava, R. Some classes of generating functions associated with a certain family of extended and generalized hypergeometric functions, Appl. Math. Comput., Volume 243 (2014), pp. 132-137

[16] Srivastava, R.; Cho, N.E. Generating functions for a certain class of incomplete hypergeometric polynomials, Appl. Math. Comput., Volume 219 (2012), pp. 3219-3225

[17] Srivastava, R.; Cho, N.E. Some extended Pochhammer symbols and their applications involving generalized hypergeometric polynomials, Appl. Math. Comput., Volume 234 (2014), pp. 277-285

[18] Virchenko, N. On some generalizations of the functions of hypergeometric type, Fract. Calc. Appl. Anal., Volume 2 (1999), pp. 233-244

[19] Virchenko, N.; Kalla, S.L.; Al-Zamel, A. Some results on a generalized hypergeometric function, Integral Transforms Spec. Funct., Volume 12 (2001) no. 1, pp. 89-100

Cité par Sources :