Nous étudions des paramètres exceptionnels de transformations linéaires mod un. La présente note prouve que l'ensemble de ces valeurs a zéro pour dimension de Hausdorff. Ceci répond à la question posée par Bugeaud.
We study exceptional parameters of linear mod one transformations. The present note proves that the set of such values has Hausdorff dimension zero. This answers the question posed by Bugeaud.
Accepté le :
Publié le :
@article{CRMATH_2015__353_4_291_0, author = {Kwon, DoYong}, title = {Exceptional parameters of linear mod one transformations and fractional parts $ \{\xi {(p/q)}^{n}\}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {291--296}, publisher = {Elsevier}, volume = {353}, number = {4}, year = {2015}, doi = {10.1016/j.crma.2015.01.017}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.01.017/} }
TY - JOUR AU - Kwon, DoYong TI - Exceptional parameters of linear mod one transformations and fractional parts $ \{\xi {(p/q)}^{n}\}$ JO - Comptes Rendus. Mathématique PY - 2015 SP - 291 EP - 296 VL - 353 IS - 4 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2015.01.017/ DO - 10.1016/j.crma.2015.01.017 LA - en ID - CRMATH_2015__353_4_291_0 ER -
%0 Journal Article %A Kwon, DoYong %T Exceptional parameters of linear mod one transformations and fractional parts $ \{\xi {(p/q)}^{n}\}$ %J Comptes Rendus. Mathématique %D 2015 %P 291-296 %V 353 %N 4 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2015.01.017/ %R 10.1016/j.crma.2015.01.017 %G en %F CRMATH_2015__353_4_291_0
Kwon, DoYong. Exceptional parameters of linear mod one transformations and fractional parts $ \{\xi {(p/q)}^{n}\}$. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 291-296. doi : 10.1016/j.crma.2015.01.017. http://archive.numdam.org/articles/10.1016/j.crma.2015.01.017/
[1] Linear mod one transformations and the distribution of fractional parts , Acta Arith., Volume 114 (2004) no. 4, pp. 301-311
[2] Fractional parts of powers and Sturmian words, C. R. Math. Acad. Sci. Paris, Ser. I, Volume 341 (2005) no. 2, pp. 69-74
[3] Powers of a rational number modulo 1 cannot lie in a small interval, Acta Arith., Volume 137 (2009) no. 3, pp. 233-239
[4] Fractal Geometry. Mathematical Foundations and Applications, John Wiley & Sons, Inc., Hoboken, NJ, USA, 2003
[5] On the range of fractional parts , Acta Arith., Volume 70 (1995) no. 2, pp. 125-147
[6] An Introduction to the Theory of Numbers, Oxford University Press, Oxford, 2008
[7] A devil's staircase from rotations and irrationality measures for Liouville numbers, Math. Proc. Camb. Philos. Soc., Volume 145 (2008) no. 3, pp. 739-756
[8] The natural extensions of β-transformations which generalize Baker's transformations, Nonlinearity, Volume 22 (2009) no. 2, pp. 301-310
[9] The orbit of a β-transformation cannot lie in a small interval, J. Korean Math. Soc., Volume 49 (2012) no. 4, pp. 867-879
[10] Moments of discrete measures with dense jumps induced by β-expansions, J. Math. Anal. Appl., Volume 399 (2013) no. 1, pp. 1-11
[11] A two-dimensional singular function via Sturmian words in base β, J. Number Theory, Volume 133 (2013) no. 11, pp. 3982-3994
[12] Algebraic Combinatorics on Words, Cambridge University Press, Cambridge, 2002
[13] An unsolved problem on the powers of 3/2, J. Aust. Math. Soc., Volume 8 (1968), pp. 313-321
Cité par Sources :