Analytic geometry
Logarithmic residues along plane curves
[Résidus logarithmiques des courbes planes]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 345-349.

Soit (D,0)(C2,0) un germe de courbe plane défini par une équation réduite f. On démontre qu'un idéal fractionnaire I de D vérifie une propriété de symétrie avec son dual, et on applique ce résultat à l'étude du comportement du module des résidus logarithmiques de D dans le cas de déformations équisingulières.

Let (D,0)(C2,0) be a plane curve germ defined by a reduced equation f. We prove that a fractional ideal I of D satisfies a symmetry property with its dual, and then apply it to study the behavior of the module of logarithmic residues of D in equisingular deformations.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.02.002
Pol, Delphine 1

1 Université d'Angers, LAREMA, UMR CNRS 6093, 2, boulevard Lavoisier, 49045 Angers cedex 01, France
@article{CRMATH_2015__353_4_345_0,
     author = {Pol, Delphine},
     title = {Logarithmic residues along plane curves},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {345--349},
     publisher = {Elsevier},
     volume = {353},
     number = {4},
     year = {2015},
     doi = {10.1016/j.crma.2015.02.002},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.02.002/}
}
TY  - JOUR
AU  - Pol, Delphine
TI  - Logarithmic residues along plane curves
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 345
EP  - 349
VL  - 353
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2015.02.002/
DO  - 10.1016/j.crma.2015.02.002
LA  - en
ID  - CRMATH_2015__353_4_345_0
ER  - 
%0 Journal Article
%A Pol, Delphine
%T Logarithmic residues along plane curves
%J Comptes Rendus. Mathématique
%D 2015
%P 345-349
%V 353
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2015.02.002/
%R 10.1016/j.crma.2015.02.002
%G en
%F CRMATH_2015__353_4_345_0
Pol, Delphine. Logarithmic residues along plane curves. Comptes Rendus. Mathématique, Tome 353 (2015) no. 4, pp. 345-349. doi : 10.1016/j.crma.2015.02.002. http://archive.numdam.org/articles/10.1016/j.crma.2015.02.002/

[1] Briançon, J.; Geandier, F.; Maisonobe, P. Déformation d'une singularité isolée d'hypersurface et polynôme de Bernstein, Bull. Soc. Math. Fr., Volume 120 (1992) no. 1, pp. 15-49

[2] Cassou-Noguès, P.; Płoski, A. Invariants of plane curve singularities and Newton diagrams, Univ. Iagel. Acta Math., Volume 49 (2011), pp. 9-34

[3] de Jong, T.; Pfister, G. Local Analytic Geometry, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, Germany, 2000

[4] Delgado de la Mata, F. The semigroup of values of a curve singularity with several branches, Manuscr. Math., Volume 59 (1987) no. 3, pp. 347-374

[5] Delgado de la Mata, F. Gorenstein curves and symmetry of the semigroup of values, Manuscr. Math., Volume 61 (1988) no. 3, pp. 285-296

[6] Granger, M.; Schulze, M. Normal crossing properties of complex hypersurfaces via logarithmic residues, Compos. Math., Volume 150 (2014) no. 9, pp. 1607-1622

[7] Saito, K. Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci., Univ. Tokyo, Sect. 1A, Math., Volume 27 (1980) no. 2, pp. 265-291

[8] Teissier, B. The hunting of invariants in the geometry of discriminants, Oslo 1976 (Proc. Ninth Nordic Summer School/NAVF Sympos. Math.), Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands (1977), pp. 565-678

[9] Torielli, M. Deformations of free and linear free divisors, Ann. Inst. Fourier (Grenoble), Volume 63 (2013) no. 6, pp. 2097-2136

[10] Zariski, O. Le problème des modules pour les branches planes, Hermann, Paris, 1986 (course given at the Centre de mathématiques de l'École polytechnique, Paris, October–November 1973, with an appendix by B. Teissier)

Cité par Sources :