Nous introduisons la notion de matrice de Vandermonde confluente sur les quaternions et nous calculons son rang. Ceci étend les résultats de T.Y. Lam (A general theory of Vandermonde matrices, Expo. Math. 4 (3) (1986) 193–215). Ensuite, nous montrons une formule de représentation d'ordre supérieur pour les différences divisées de polynômes à coefficients quaternions, généralisant un résultat de G. Gentili et D.C. Struppa (A new theory of regular functions of a quaternionic variable, Adv. Math. 216 (1) (2007) 279–301).
We introduce the notion of a confluent Vandermonde matrix over quaternions and present the formula to compute its rank. This extends a result of T.Y. Lam (A general theory of Vandermonde matrices, Expo. Math. 4 (3) (1986) 193–215). Another contribution is the representation formula for divided differences of quaternion polynomials which extends a result of G. Gentili and D.C. Struppa (A new theory of regular functions of a quaternionic variable, Adv. Math. 216 (1) (2007) 279–301).
Accepté le :
Publié le :
@article{CRMATH_2015__353_5_391_0, author = {Bolotnikov, Vladimir}, title = {Confluent {Vandermonde} matrices and divided differences over quaternions}, journal = {Comptes Rendus. Math\'ematique}, pages = {391--395}, publisher = {Elsevier}, volume = {353}, number = {5}, year = {2015}, doi = {10.1016/j.crma.2015.02.004}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.02.004/} }
TY - JOUR AU - Bolotnikov, Vladimir TI - Confluent Vandermonde matrices and divided differences over quaternions JO - Comptes Rendus. Mathématique PY - 2015 SP - 391 EP - 395 VL - 353 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2015.02.004/ DO - 10.1016/j.crma.2015.02.004 LA - en ID - CRMATH_2015__353_5_391_0 ER -
%0 Journal Article %A Bolotnikov, Vladimir %T Confluent Vandermonde matrices and divided differences over quaternions %J Comptes Rendus. Mathématique %D 2015 %P 391-395 %V 353 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2015.02.004/ %R 10.1016/j.crma.2015.02.004 %G en %F CRMATH_2015__353_5_391_0
Bolotnikov, Vladimir. Confluent Vandermonde matrices and divided differences over quaternions. Comptes Rendus. Mathématique, Tome 353 (2015) no. 5, pp. 391-395. doi : 10.1016/j.crma.2015.02.004. http://archive.numdam.org/articles/10.1016/j.crma.2015.02.004/
[1] Polynomial interpolation over quaternions, J. Math. Anal. Appl., Volume 421 (2015) no. 1, pp. 567-590
[2] A new theory of regular functions of a quaternionic variable, Adv. Math., Volume 216 (2007) no. 1, pp. 279-301
[3] The generalized Vandermonde matrix, Math. Mag., Volume 57 (1984) no. 1, pp. 15-21
[4] A general theory of Vandermonde matrices, Expo. Math., Volume 4 (1986) no. 3, pp. 193-215
[5] Vandermonde and Wronskian matrices over division rings, J. Algebra, Volume 119 (1988) no. 2, pp. 308-336
Cité par Sources :