Soit C une courbe irréductible, lisse, définie sur un corps algébriquement clos. Nous montrons que le produit symétrique a la propriété de la diagonale, pour tout . Pour tous entiers n et r, soit le schéma Quot paramétrant tous les quotients de torsion de de degré nr. Nous montrons que a la propriété du point, faible.
Let C be an irreducible smooth projective curve defined over an algebraically closed field. We prove that the symmetric product has the diagonal property for all . For any positive integers n and r, let be the Quot scheme parameterizing all the torsion quotients of of degree nr. We prove that has the weak-point property.
Accepté le :
Publié le :
@article{CRMATH_2015__353_5_445_0, author = {Biswas, Indranil and Singh, Sanjay Kumar}, title = {Diagonal property of the symmetric product of a smooth curve}, journal = {Comptes Rendus. Math\'ematique}, pages = {445--448}, publisher = {Elsevier}, volume = {353}, number = {5}, year = {2015}, doi = {10.1016/j.crma.2015.02.007}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.02.007/} }
TY - JOUR AU - Biswas, Indranil AU - Singh, Sanjay Kumar TI - Diagonal property of the symmetric product of a smooth curve JO - Comptes Rendus. Mathématique PY - 2015 SP - 445 EP - 448 VL - 353 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2015.02.007/ DO - 10.1016/j.crma.2015.02.007 LA - en ID - CRMATH_2015__353_5_445_0 ER -
%0 Journal Article %A Biswas, Indranil %A Singh, Sanjay Kumar %T Diagonal property of the symmetric product of a smooth curve %J Comptes Rendus. Mathématique %D 2015 %P 445-448 %V 353 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2015.02.007/ %R 10.1016/j.crma.2015.02.007 %G en %F CRMATH_2015__353_5_445_0
Biswas, Indranil; Singh, Sanjay Kumar. Diagonal property of the symmetric product of a smooth curve. Comptes Rendus. Mathématique, Tome 353 (2015) no. 5, pp. 445-448. doi : 10.1016/j.crma.2015.02.007. http://archive.numdam.org/articles/10.1016/j.crma.2015.02.007/
[1] On the -metric of vortex moduli spaces, Nucl. Phys. B, Volume 844 (2011), pp. 308-333
[2] Gromov invariants for holomorphic maps from Riemann surfaces to Grassmannians, J. Amer. Math. Soc., Volume 9 (1996), pp. 529-571
[3] On the Abel–Jacobi map for divisors of higher rank on a curve, Math. Ann., Volume 299 (1994), pp. 641-672
[4] Moduli of vortices and Grassmann manifolds, Commun. Math. Phys., Volume 320 (2013), pp. 1-20
[5] The diagonal property for abelian varieties, Curves and Abelian Varieties, Contemporary Mathematics, vol. 465, American Mathematical Society, Providence, RI, USA, 2008, pp. 45-50
[6] Techniques de construction et théorèmes d'existence en géométrie algébrique, IV. Les schémas de Hilbert. IV, Séminaire Bourbaki, vol. 6, Société mathématique de France, Paris, 1995, pp. 249-276 (Exp. No. 221)
[7] Construction of Hilbert and Quot schemes, Fundamental Algebraic Geometry, Mathematical Surveys and Monographs, vol. 123, American Mathematical Society, Providence, RI, USA, 2005, pp. 105-137
[8] Diagonal subschemes and vector bundles, Pure Appl. Math. Q., Volume 4 (2008), pp. 1233-1278
Cité par Sources :
☆ The first named author is supported by the J.C. Bose Fellowship. The second named author is supported by IMPAN Postdoctoral Research Fellowship.