On montre que les groupes de Kac–Moody topologiques ou discrets définis sur des corps finis sont 2-engendrés dans de nombreux cas. On exhibe ensuite des bornes explicites sur le nombre minimal de générateurs pour un groupe de Kac–Moody arbitraire.
This article shows that discrete or topological Kac–Moody groups defined over finite fields are in many cases 2-generated. We provide explicit bounds on the minimal number of generators for arbitrary Kac–Moody groups.
Accepté le :
Publié le :
@article{CRMATH_2015__353_8_695_0, author = {Capdeboscq, Inna}, title = {On the generation of discrete and topological {Kac{\textendash}Moody} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {695--699}, publisher = {Elsevier}, volume = {353}, number = {8}, year = {2015}, doi = {10.1016/j.crma.2015.03.009}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.03.009/} }
TY - JOUR AU - Capdeboscq, Inna TI - On the generation of discrete and topological Kac–Moody groups JO - Comptes Rendus. Mathématique PY - 2015 SP - 695 EP - 699 VL - 353 IS - 8 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2015.03.009/ DO - 10.1016/j.crma.2015.03.009 LA - en ID - CRMATH_2015__353_8_695_0 ER -
%0 Journal Article %A Capdeboscq, Inna %T On the generation of discrete and topological Kac–Moody groups %J Comptes Rendus. Mathématique %D 2015 %P 695-699 %V 353 %N 8 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2015.03.009/ %R 10.1016/j.crma.2015.03.009 %G en %F CRMATH_2015__353_8_695_0
Capdeboscq, Inna. On the generation of discrete and topological Kac–Moody groups. Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 695-699. doi : 10.1016/j.crma.2015.03.009. http://archive.numdam.org/articles/10.1016/j.crma.2015.03.009/
[1] Presentations de certaines BN-paires jumeles comme sommes amalgames, C. R. Acad. Sci. Paris, Ser. I, Volume 325 (1997) no. 7, pp. 701-706
[2] Some applications of the first cohomology group, J. Algebra, Volume 90 (1984) no. 2, pp. 446-460
[3] Almost split real forms for hyperbolic Kac–Moody Lie algebras, J. Phys. A, Volume 39 (2006) no. 44, pp. 13659-13690
[4] Bounded presentations of Kac–Moody groups, J. Group Theory, Volume 16 (2013) no. 6, pp. 899-905
[5] On some pro-p groups from infinite-dimensional Lie theory, Math. Z., Volume 278 (2014) no. 1–2, pp. 39-54
[6] Simplicité abstraite des groupes de Kac–Moody non-affines, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006) no. 8, pp. 539-544
[7] Classification of hyperbolic Dynkin diagrams, root lengths and Weyl group orbits, J. Phys. A, Volume 43 (2010) no. 15, p. 155209 ([30 p.])
[8] Lie Algebras of Finite and Affine Type, Cambridge Studies in Advanced Mathematics, vol. 96, Cambridge University Press, Cambridge, UK, 2005
[9] Automorphisms of affine Kac–Moody groups and related Chevalley groups over rings, J. Algebra, Volume 155 (1993) no. 1, pp. 44-94
[10] The Classification of the Finite Simple Groups, Number 1, American Mathematical Society Surveys and Monographs, vol. 40, 1998 (#3)
[11] Probabilistic generation of finite simple groups. Special issue in honor of Helmut Wielandt, J. Algebra, Volume 234 (2000) no. 2, pp. 743-792
[12] Construction de groupes tordus en théorie de Kac–Moody, C. R. Acad. Sci. Paris, Ser. I Math., Volume 310 (1990) no. 3, pp. 77-80
[13] The probability of generating a finite classical group, Geom. Dedic., Volume 36 (1990) no. 1, pp. 67-87
[14] The probability of generating a finite simple group, Isr. J. Math., Volume 198 (2013), pp. 371-392
[15] Groupes de Kac–Moody déployés sur un corps local, II. Masures ordonnées, 2012 (preprint) | arXiv
[16] Uniqueness and presentation of Kac–Moody groups over fields, J. Algebra, Volume 105 (1987), pp. 542-573
Cité par Sources :