Soit F un corps fini de cardinalité impaire q, l'anneau de polynômes sur F, le corps des fonctions rationnelles sur F et l'ensemble des polynômes unitaires et sans facteur carré en A de degré impair. Si , on note par la clóture intégrale de A en . Dans cette Note, nous donnons une preuve simple de la valeur moyenne de la taille des groupes quand D varie dans l'ensemble et quand q est maintenu fixe. La preuve est basée sur des estimations des sommes de caractères et sur l'utilisation de l'hypothèse de Riemann pour les courbes sur les corps finis.
Let F be a finite field of odd cardinality q, the polynomial ring over F, the rational function field over F and the set of square-free monic polynomials in A of degree odd. If , we denote by the integral closure of A in . In this Note, we give a simple proof for the average value of the size of the groups as D varies over the ensemble and q is kept fixed. The proof is based on character sums estimates and on the use of the Riemann hypothesis for curves over finite fields.
Accepté le :
Publié le :
@article{CRMATH_2015__353_8_677_0, author = {Andrade, Julio}, title = {A simple proof of the mean value of $ |{K}_{2}(\mathcal{O})|$ in function fields}, journal = {Comptes Rendus. Math\'ematique}, pages = {677--682}, publisher = {Elsevier}, volume = {353}, number = {8}, year = {2015}, doi = {10.1016/j.crma.2015.04.018}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.04.018/} }
TY - JOUR AU - Andrade, Julio TI - A simple proof of the mean value of $ |{K}_{2}(\mathcal{O})|$ in function fields JO - Comptes Rendus. Mathématique PY - 2015 SP - 677 EP - 682 VL - 353 IS - 8 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2015.04.018/ DO - 10.1016/j.crma.2015.04.018 LA - en ID - CRMATH_2015__353_8_677_0 ER -
%0 Journal Article %A Andrade, Julio %T A simple proof of the mean value of $ |{K}_{2}(\mathcal{O})|$ in function fields %J Comptes Rendus. Mathématique %D 2015 %P 677-682 %V 353 %N 8 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2015.04.018/ %R 10.1016/j.crma.2015.04.018 %G en %F CRMATH_2015__353_8_677_0
Andrade, Julio. A simple proof of the mean value of $ |{K}_{2}(\mathcal{O})|$ in function fields. Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 677-682. doi : 10.1016/j.crma.2015.04.018. http://archive.numdam.org/articles/10.1016/j.crma.2015.04.018/
[1] J.C. Andrade, Rudnick and Soundararajan's theorem for function fields, preprint, 2014.
[2] The mean value of in the hyperelliptic ensemble, J. Number Theory, Volume 132 (2012), pp. 2793-2816
[3] Conjectures for the integral moments and ratios of L-functions over function fields, J. Number Theory, Volume 142 (2014), pp. 102-148
[4] Statistics of the zeros of zeta functions in families of hyperelliptic curves over a finite field, Compos. Math., Volume 146 (2010), pp. 81-101
[5] Eisenstein series of -integral weight and the mean value of real Dirichlet L-series, Invent. Math., Volume 80 (1985), pp. 185-208
[6] Average values of L-series in function fields, J. Reine Angew. Math., Volume 426 (1992), pp. 117-150
[7] Estimates for coefficients of L-functions for function fields, Finite Fields Appl., Volume 5 (1999), pp. 76-88
[8] On the mean value of for real characters, Analysis, Volume 1 (1981), pp. 149-161
[9] On the cohomology and K-theory of the general linear group over a finite field, Ann. Math. (2), Volume 96 (1972), pp. 552-586
[10] Average value of in function fields, Finite Fields Appl., Volume 1 (1995), pp. 235-241
[11] Number Theory in Function Fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002
[12] Symbols in arithmetic, International Congress of Mathematics, vol. 1, Gauthier-Villars, Paris, 1971, pp. 201-211
Cité par Sources :