L'ensemble des points d'orbite bornée est connu, pour une application de Hénon généralisée hyperbolique (dans le sens de [3]), comme étant un ensemble compliqué admettant une lamination par images biholomorphes de (voir [3,6]). Nous montrons que, pour certaines applications de Hénon généralisées hyperboliques, une feuille de cette lamination est une courbe de Brody injective dans (voir la sous-section 2.2 pour les notions de courbes de Brody et courbes de Brody injectives).
For a hyperbolic generalized Hénon mapping (in the sense of [3]), , the boundary of the set of points with bounded orbit is known as a complicated set and also known to admit a lamination by biholomorphic images of (see [3,6]). We prove that there exists a leaf, which is an injective Brody curve in , in the lamination of for certain generalized Hénon mappings (for Brody curves and injective Brody curves, see Subsection 2.2).
Accepté le :
Publié le :
@article{CRMATH_2015__353_8_701_0, author = {Ahn, Taeyong}, title = {Brody curves in complicated sets}, journal = {Comptes Rendus. Math\'ematique}, pages = {701--704}, publisher = {Elsevier}, volume = {353}, number = {8}, year = {2015}, doi = {10.1016/j.crma.2015.05.001}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.05.001/} }
TY - JOUR AU - Ahn, Taeyong TI - Brody curves in complicated sets JO - Comptes Rendus. Mathématique PY - 2015 SP - 701 EP - 704 VL - 353 IS - 8 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2015.05.001/ DO - 10.1016/j.crma.2015.05.001 LA - en ID - CRMATH_2015__353_8_701_0 ER -
Ahn, Taeyong. Brody curves in complicated sets. Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 701-704. doi : 10.1016/j.crma.2015.05.001. http://archive.numdam.org/articles/10.1016/j.crma.2015.05.001/
[1] Foliation structure for generalized Hénon mappings, University of Michigan, USA, 2012 (PhD thesis)
[2] Foliation structure for generalized Hénon mappings (preprint) | arXiv
[3] Polynomial diffeomorphisms of : currents, equilibrium measure and hyperbolicity, Invent. Math., Volume 103 (1991) no. 1, pp. 69-99
[4] Polynomial diffeomorphisms of : IV. The measure of maximal entropy and laminar currents, Invent. Math., Volume 112 (1993) no. 1, pp. 77-125
[5] Compact manifolds and hyperbolicity, Trans. Amer. Math. Soc., Volume 235 (1978), pp. 213-219
[6] Complex Hénon mappings in and Fatou–Bieberbach domains, Duke Math. J., Volume 65 (1992), pp. 345-380
[7] Hénon mappings in the complex domain I: the global topology of dynamical space, Publ. Math. Inst. Hautes Études Sci., Volume 79 (1994), pp. 5-46
[8] Global Stability of Dynamical Systems, Springer-Verlag, 1987
[9] Dynamique des applications rationnelles de , Panor. Synth., Volume 8 (1999), pp. 97-185
Cité par Sources :