Soit la taille maximale du sous-groupe de torsion d'une courbe elliptique à multiplications complexes, définie sur un corps de nombres de degré d. Nous montrons qu'il existe C une constante absolue, effective, telle que pour tout .
Let be the maximum size of the torsion subgroup of an elliptic curve with complex multiplication over a degree d number field. We show there is an absolute, effective constant C such that for all .
Accepté le :
Publié le :
@article{CRMATH_2015__353_8_683_0, author = {Clark, Pete L. and Pollack, Paul}, title = {The truth about torsion in the {CM} case}, journal = {Comptes Rendus. Math\'ematique}, pages = {683--688}, publisher = {Elsevier}, volume = {353}, number = {8}, year = {2015}, doi = {10.1016/j.crma.2015.05.004}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.05.004/} }
TY - JOUR AU - Clark, Pete L. AU - Pollack, Paul TI - The truth about torsion in the CM case JO - Comptes Rendus. Mathématique PY - 2015 SP - 683 EP - 688 VL - 353 IS - 8 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/j.crma.2015.05.004/ DO - 10.1016/j.crma.2015.05.004 LA - en ID - CRMATH_2015__353_8_683_0 ER -
%0 Journal Article %A Clark, Pete L. %A Pollack, Paul %T The truth about torsion in the CM case %J Comptes Rendus. Mathématique %D 2015 %P 683-688 %V 353 %N 8 %I Elsevier %U http://archive.numdam.org/articles/10.1016/j.crma.2015.05.004/ %R 10.1016/j.crma.2015.05.004 %G en %F CRMATH_2015__353_8_683_0
Clark, Pete L.; Pollack, Paul. The truth about torsion in the CM case. Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 683-688. doi : 10.1016/j.crma.2015.05.004. http://archive.numdam.org/articles/10.1016/j.crma.2015.05.004/
[1] Torsion points on abelian varieties with complex multiplication, Kitasakado, 1994, World Sci. Publ., River Edge, NJ, USA (1995), pp. 1-22
[2] Remarks on the size of , Publ. Math. (Debr.), Volume 1 (1950), pp. 165-182
[3] Torsion points on CM elliptic curves over real number fields (submitted for publication) | arXiv
[4] Torsion bounds for elliptic curves and Drinfeld modules, J. Number Theory, Volume 130 (2010), pp. 1241-1250
[5] Torsion points on elliptic curves with complex multiplication (with an appendix by Alex Rice), Int. J. Number Theory, Volume 9 (2013), pp. 447-479
[6] Advanced Topics in Computational Number Theory, Graduate Texts in Mathematics, vol. 193, Springer-Verlag, 2000
[7] Multiplicative Number Theory, Graduate Texts in Mathematics, vol. 74, Springer-Verlag, New York, 2000
[8] Über die reellen Nullstellen der Dirichletschen L-Reihen, Corrigendum, Acta Arith., Volume 22 (1973), pp. 391-421
[9] Sur le nombre de points de torsion rationnels sur une courbe elliptique, C. R. Acad. Sci. Paris, Ser. I, Volume 329 (1999) no. 2, pp. 97-100
[10] An Introduction to the Theory of Numbers, Oxford University Press, Oxford, UK, 2008
[11] On Siegel's zero, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 2 (1975), pp. 571-583
[12] Elementary methods in the theory of L-functions. II. On the greatest real zero of a real L-function, Acta Arith., Volume 31 (1976), pp. 273-289
[13] A generalization of Mertens' theorem, J. Ramanujan Math. Soc., Volume 14 (1999), pp. 1-19
[14] Points of finite order on abelian varieties, p-Adic Methods in Number Theory and Algebraic Geometry, Contemp. Math., vol. 133, Amer. Math. Soc., Providence, RI, USA, 1992, pp. 175-193
[15] Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, vol. 151, Springer-Verlag, 1994
Cité par Sources :