Functional analysis
Function spaces on quantum tori
[Espaces de fonctions sur les tores quantiques]
Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 729-734.

On considère les espaces de Sobolev, Besov et Triebel–Lizorkin sur un tore quantique Tθd de d générateurs. Les principaux résultats comprennent : le plongement de Besov et Sobolev ; des caractérisations à la Littlewood–Paley pour les espaces de Besov et Triebel–Lizorkin ; une formule explicite de la K-fonctionnelle de (Lp(Tθd),Wpk(Tθd)) ; l'indépendance en θ des multiplicateurs de Fourier complètement bornés sur ces espaces.

We study Sobolev, Besov and Triebel–Lizorkin spaces on quantum tori. These spaces share many properties with their classical counterparts. The results announced include: Besov and Sobolev embedding theorems; Littlewood–Paley-type characterizations of Besov and Triebel–Lizorkin spaces; an explicit description of the K-functional of (Lp(Tθd),Wpk(Tθd)); descriptions of completely bounded Fourier multipliers on these spaces.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2015.06.002
Xiong, Xiao 1 ; Xu, Quanhua 1, 2 ; Yin, Zhi 2

1 Laboratoire de Mathématiques, Université de Franche-Comté, 25030 Besançon cedex, France
2 School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
@article{CRMATH_2015__353_8_729_0,
     author = {Xiong, Xiao and Xu, Quanhua and Yin, Zhi},
     title = {Function spaces on quantum tori},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {729--734},
     publisher = {Elsevier},
     volume = {353},
     number = {8},
     year = {2015},
     doi = {10.1016/j.crma.2015.06.002},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2015.06.002/}
}
TY  - JOUR
AU  - Xiong, Xiao
AU  - Xu, Quanhua
AU  - Yin, Zhi
TI  - Function spaces on quantum tori
JO  - Comptes Rendus. Mathématique
PY  - 2015
SP  - 729
EP  - 734
VL  - 353
IS  - 8
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2015.06.002/
DO  - 10.1016/j.crma.2015.06.002
LA  - en
ID  - CRMATH_2015__353_8_729_0
ER  - 
%0 Journal Article
%A Xiong, Xiao
%A Xu, Quanhua
%A Yin, Zhi
%T Function spaces on quantum tori
%J Comptes Rendus. Mathématique
%D 2015
%P 729-734
%V 353
%N 8
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2015.06.002/
%R 10.1016/j.crma.2015.06.002
%G en
%F CRMATH_2015__353_8_729_0
Xiong, Xiao; Xu, Quanhua; Yin, Zhi. Function spaces on quantum tori. Comptes Rendus. Mathématique, Tome 353 (2015) no. 8, pp. 729-734. doi : 10.1016/j.crma.2015.06.002. http://archive.numdam.org/articles/10.1016/j.crma.2015.06.002/

[1] Bourgain, J.; Brézis, H.; Mironescu, P. Limiting embedding theorems for Ws,p when s1 and applications, J. Anal. Math., Volume 87 (2002), pp. 37-75

[2] Chen, Z.; Xu, Q.; Yin, Z. Harmonic analysis on quantum tori, Commun. Math. Phys., Volume 322 (2013), pp. 755-805

[3] DeVore, R.A.; Scherer, K. Interpolation of linear operators on Sobolev spaces, Ann. Math., Volume 109 (1979), pp. 583-599

[4] Johnen, H.; Scherer, K. On the equivalence of the K-functional and moduli of continuity and some applications, Lect. Notes Math., Volume 571 (1976), pp. 119-140

[5] Junge, M.; Mei, T. Noncommutative Riesz transforms – a probabilistic approach, Amer. J. Math., Volume 132 (2010), pp. 611-681

[6] Maz'ya, V.; Shaposhnikova, T. On the Bourgain, Brézis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces, J. Funct. Anal., Volume 195 (2002), pp. 230-238

[7] Neuwirth, S.; Ricard, É. Transfer of Fourier multipliers into Schur multipliers and sumsets in a discrete group, Can. J. Math., Volume 63 (2011), pp. 1161-1187

[8] Pisier, G. Noncommutative vector-valued Lp spaces and completely p-summing maps, Astérisque, Volume 247 (1998) (vi+131 pp.)

[9] Pisier, G.; Xu, Q. Noncommutative Lp-spaces (Johnson, W.B.; Lindenstrauss, J., eds.), Handbook of the Geometry of Banach Spaces, vol. 2, North-Holland, Amsterdam, 2003, pp. 1459-1517

[10] Spera, M. Sobolev theory for noncommutative tori, Rend. Semin. Mat. Univ. Padova, Volume 86 (1992), pp. 143-156

[11] Spera, M. A symplectic approach to Yang–Mills theory for noncommutative tori, Can. J. Math., Volume 44 (1992), pp. 368-387

[12] Triebel, H. Theory of Function Spaces, II, Birkhäuser, Basel, 1992

[13] Varopoulos, N.T. Hardy–Littlewood theory for semigroups, J. Funct. Anal., Volume 63 (1985), pp. 240-260

[14] Weaver, N. Lipschitz algebras and derivations of von Neumann algebras, J. Funct. Anal., Volume 139 (1996), pp. 261-300

[15] Weaver, N. α-Lipschitz algebras on the noncommutative torus, J. Oper. Theory, Volume 39 (1998), pp. 123-138

[16] X. Xiong, Q. Xu, Z. Yin, Sobolev, Besov and Triebel–Lizorkin spaces on quantum tori, Preprint, 2015.

Cité par Sources :