Partial differential equations
A spectral inequality for degenerate operators and applications
[Une inégalité spectrale pour les opérateurs dégénérés et applications]
Comptes Rendus. Mathématique, Tome 356 (2018) no. 11-12, pp. 1131-1155.

Dans cet article, on s'intéresse à l'inégalité spectrale de type Lebeau–Robbiano sur la somme de fonctions propres pour une famille d'opérateurs dégénérés. Les applications sont données en théorie du contrôle, comme le contrôle impulsionnel et la stabilisation en temps fini.

In this paper, we establish a Lebeau–Robbiano spectral inequality for a degenerate one-dimensional elliptic operator, and we show how it can be used to study impulse control and finite-time stabilization for a degenerate parabolic equation.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2018.11.004
Buffe, Rémi 1 ; Phung, Kim Dang 2

1 Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France
2 Institut Denis-Poisson, CNRS, UMR 7013, Université d'Orléans, BP 6759, 45067 Orléans cedex 2, France
@article{CRMATH_2018__356_11-12_1131_0,
     author = {Buffe, R\'emi and Phung, Kim Dang},
     title = {A spectral inequality for degenerate operators and applications},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1131--1155},
     publisher = {Elsevier},
     volume = {356},
     number = {11-12},
     year = {2018},
     doi = {10.1016/j.crma.2018.11.004},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/j.crma.2018.11.004/}
}
TY  - JOUR
AU  - Buffe, Rémi
AU  - Phung, Kim Dang
TI  - A spectral inequality for degenerate operators and applications
JO  - Comptes Rendus. Mathématique
PY  - 2018
SP  - 1131
EP  - 1155
VL  - 356
IS  - 11-12
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/j.crma.2018.11.004/
DO  - 10.1016/j.crma.2018.11.004
LA  - en
ID  - CRMATH_2018__356_11-12_1131_0
ER  - 
%0 Journal Article
%A Buffe, Rémi
%A Phung, Kim Dang
%T A spectral inequality for degenerate operators and applications
%J Comptes Rendus. Mathématique
%D 2018
%P 1131-1155
%V 356
%N 11-12
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/j.crma.2018.11.004/
%R 10.1016/j.crma.2018.11.004
%G en
%F CRMATH_2018__356_11-12_1131_0
Buffe, Rémi; Phung, Kim Dang. A spectral inequality for degenerate operators and applications. Comptes Rendus. Mathématique, Tome 356 (2018) no. 11-12, pp. 1131-1155. doi : 10.1016/j.crma.2018.11.004. http://archive.numdam.org/articles/10.1016/j.crma.2018.11.004/

[1] Alabau-Boussouira, F.; Cannarsa, P.; Fragnelli, G. Carleman estimates for degenerate parabolic operators with applications to null controllability, J. Evol. Equ., Volume 6 (2006) no. 2, pp. 161-204

[2] Apraiz, J.; Escauriaza, L. Null-control and measurable sets, ESAIM Control Optim. Calc. Var., Volume 19 (2013) no. 1, pp. 239-254

[3] Apraiz, J.; Escauriaza, L.; Wang, G.; Zhang, C. Observability inequalities and measurable sets, J. Eur. Math. Soc., Volume 16 (2014) no. 11, pp. 2433-2475

[4] Bardos, C.; Phung, K.D. Observation estimate for kinetic transport equations by diffusion approximation, C. R. Acad. Sci. Paris, Ser. I, Volume 355 (2017) no. 6, pp. 640-664

[5] Bardos, C.; Tartar, L. Sur l'unicité retrograde des équations paraboliques et quelques questions voisines, Arch. Ration. Mech. Anal., Volume 50 (1973), pp. 10-25

[6] Beauchard, K.; Pravda-Starov, K. Null controllability of hypoelliptic quadratic equations, J. Éc. Polytech. Math., Volume 5 (2018), pp. 1-43

[7] Benabdallah, A.; Naso, M.G. Null controllability of a thermoelastic plate, Abstr. Appl. Anal., Volume 7 (2002) no. 11, pp. 585-599

[8] Cannarsa, P.; Martinez, P.; Vancostenoble, J. Carleman estimates for a class of degenerate parabolic operators, SIAM J. Control Optim., Volume 47 (2008) no. 1, pp. 1-19

[9] Cannarsa, P.; Martinez, P.; Vancostenoble, J. Global Carleman estimates for degenerate parabolic operators with applications, Mem. Amer. Math. Soc., Volume 239 (2016) (ix+209 p)

[10] Cannarsa, P.; Martinez, P.; Vancostenoble, J. The cost of controlling weakly degenerate parabolic equations by boundary controls, Math. Control Relat. Fields, Volume 7 (2017), pp. 171-211

[11] Cannarsa, P.; Martinez, P.; Vancostenoble, J. The cost of controlling strongly degenerate parabolic equations | arXiv

[12] Cannarsa, P.; Tort, J.; Yamamoto, M. Unique continuation and approximate controllability for a degenerate parabolic equation, Appl. Anal., Volume 91 (2012) no. 8, pp. 1409-1425

[13] Chaves-Silva, F.W.; Lebeau, G. Spectral inequality and optimal cost of controllability for the Stokes system, ESAIM Control Optim. Calc. Var., Volume 22 (2016) no. 4, pp. 1137-1162

[14] Coron, J.-M.; Nguyen, H.-M. Null controllability and finite time stabilization for the heat equations with variable coefficients in space in one dimension via backstepping approach, Arch. Ration. Mech. Anal., Volume 225 (2017) no. 3, pp. 993-1023

[15] Duyckaerts, T.; Miller, L. Resolvent conditions for the control of parabolic equations, J. Funct. Anal., Volume 263 (2012) no. 11, pp. 3641-3673

[16] Escauriaza, L.; Montaner, S.; Zhang, C. Observation from measurable sets for parabolic analytic evolutions and applications, J. Math. Pures Appl. (9), Volume 104 (2015) no. 5, pp. 837-867

[17] Fernandez-Cara, E.; Zuazua, E. The cost of approximate controllability for heat equations: the linear case, Adv. Differ. Equ., Volume 5 (2000) no. 4–6, pp. 465-514

[18] Fursikov, A.V.; Imanuvilov, O.Yu. Controllability of Evolution Equations, Lecture Notes Series, vol. 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996

[19] Gao, P. The Lebeau–Robbiano inequality for the one-dimensional fourth order elliptic operator and its application, ESAIM Control Optim. Calc. Var., Volume 22 (2016) no. 3, pp. 811-831

[20] Gueye, M. Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations, SIAM J. Control Optim., Volume 52 (2014) no. 4, pp. 2037-2054

[21] Huang, X.; Lin, W.; Yang, B. Global finite-time stabilization of a class of uncertain nonlinear systems, Automatica, Volume 41 (2005) no. 5, pp. 881-888

[22] Jerison, D.; Lebeau, G. Nodal sets of sums of eigenfunctions, Chicago, IL, 1996 (Chicago Lectures in Math.), Univ. Chicago Press, Chicago, IL, USA (1999), pp. 223-239

[23] Le Rousseau, J.; Léautaud, M.; Robbiano, L. Controllability of a parabolic system with a diffuse interface, J. Eur. Math. Soc., Volume 15 (2013) no. 4, pp. 1485-1574

[24] Le Rousseau, J.; Lebeau, G. On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM Control Optim. Calc. Var., Volume 18 (2012), pp. 712-747

[25] Le Rousseau, J.; Moyano, I. Null-controllability of the Kolmogorov equation in the whole phase space, J. Differ. Equ., Volume 260 (2016) no. 4, pp. 3193-3233

[26] Le Rousseau, J.; Robbiano, L. Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations, Arch. Ration. Mech. Anal., Volume 195 (2010) no. 3, pp. 953-990

[27] Le Rousseau, J.; Robbiano, L. Spectral inequality and resolvent estimate for the bi-Laplace operator, J. Eur. Math. Soc. (2018) (in press) | arXiv

[28] Léautaud, M. Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems, J. Funct. Anal., Volume 258 (2010), pp. 2739-2778

[29] Lebeau, G. Introduction aux inégalités de Carleman, Control and Stabilization of Partial Differential Equations, Sémin. Congr., vol. 29, Soc. Math. France, Paris, 2015, pp. 51-92 (in French)

[30] Lebeau, G.; Robbiano, L. Contrôle exact de l'équation de la chaleur, Commun. Partial Differ. Equ., Volume 20 (1995) no. 1–2, pp. 335-356

[31] Lebeau, G.; Zuazua, E. Null-controllability of a system of linear thermoelasticity, Arch. Ration. Mech. Anal., Volume 141 (1998) no. 4, pp. 297-329

[32] Lin, F-H. A uniqueness theorem for parabolic equations, Commun. Pure Appl. Math., Volume 43 (1990) no. 1, pp. 127-136

[33] Lions, J.-L. Remarks on approximate controllability, J. Anal. Math., Volume 59 (1992), pp. 103-116

[34] Liu, G.Q. Some inequalities and asymptotic formulas for eigenvalues on Riemannian manifolds, J. Math. Anal. Appl., Volume 376 (2011), pp. 349-364

[35] Liu, H.; Zhang, C. Observability from measurable sets for a parabolic equation involving the Grushin operator and applications, Math. Methods Appl. Sci., Volume 40 (2017) no. 10, pp. 3821-3832

[36] Lü, Q. A lower bound on local energy of partial sum of eigenfunctions for Laplace–Beltrami operators, ESAIM Control Optim. Calc. Var., Volume 19 (2013) no. 1, pp. 255-273

[37] Martin, P.; Rosier, L.; Rouchon, P. Null controllability of one-dimensional parabolic equations by the flatness approach, SIAM J. Control Optim., Volume 54 (2016) no. 1, pp. 198-220

[38] Mcmahon, J. On the roots of the Bessel and certain related functions, Ann. of Math. (2), Volume 9 (1894/1895) no. 1–6, pp. 23-30

[39] Miller, L. A direct Lebeau–Robbiano strategy for the observability of heat-like semigroups, Discrete Contin. Dyn. Syst., Ser. B, Volume 14 (2010), pp. 1465-1485

[40] Miller, L. Spectral inequalities for the control of linear PDEs (Ammari, K.; Lebeau, G., eds.), PDE's, Dispersion, Scattering Theory and Control Theory, Séminaires et Congrès, vol. 30, Société mathématique de France, Paris, 2017, pp. 81-98

[41] Moyano, I. Flatness for a strongly degenerate 1-D parabolic equation, Math. Control Signals Syst., Volume 28 (2016) no. 4

[42] Opic, B.; Kufner, A. Hardy-Type Inequalities, Pitman Research Notes in Mathematics Series, vol. 219, Longman Scientific & Technical, Harlow, UK, 1990

[43] Phung, K.D. Note on the cost of the approximate controllability for the heat equation with potential, J. Math. Anal. Appl., Volume 295 (2004) no. 2, pp. 527-538

[44] Phung, K.D. Carleman commutator approach in logarithmic convexity for parabolic equations, Math. Control Relat. Fields, Volume 8 (2018) no. 3–4, pp. 899-933

[45] Phung, K.D.; Wang, G. An observability estimate for parabolic equations from a measurable set-in time and its applications, J. Eur. Math. Soc., Volume 15 (2013) no. 2, pp. 681-703

[46] Phung, K.D.; Wang, G.; Xu, Y. Impulse output rapid stabilization for heat equations, J. Differ. Equ., Volume 263 (2017) no. 8, pp. 5012-5041

[47] Phung, K.D.; Wang, L.; Zhang, C. Bang-bang property for time optimal control of semilinear heat equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014) no. 3, pp. 477-499

[48] Robbiano, L. Fonction de coût et contrôle des solutions des équations hyperboliques, Asymptot. Anal., Volume 10 (1995), pp. 95-115

[49] Vo, T.M.N. The local backward heat problem | arXiv

[50] Wang, G.; Wang, M.; Zhang, Y. Observability and unique continuation inequalities for the Schrödinger equation, J. Eur. Math. Soc. (2018) (in press) | arXiv

[51] Wang, G.; Zhang, C. Observability inequalities from measurable sets for some abstract evolution equations, SIAM J. Control Optim., Volume 55 (2017) no. 3, pp. 1862-1886

[52] Wang, G.; Yang, D.; Zhang, Y. Time optimal sampled-data controls for the heat equation, C. R. Acad. Sci. Paris, Ser. I, Volume 355 (2017) no. 12, pp. 1252-1290

[53] Yu, X.; Zhang, L. The bang-bang property of time and norm optimal control problems for parabolic equations with time-varying fractional Laplacian, ESAIM Control Optim. Calc. Var. (2018) (in press) | DOI

[54] Zhang, Y. Unique continuation estimates for the Kolmogorov equation in the whole space, C. R. Acad. Sci. Paris, Ser. I, Volume 354 (2016) no. 4, pp. 389-393

[55] Zuazua, E. (Handbook of Differential Equations: Evolutionary Equations), Volume vol. 3, Elsevier/North-Holland, Amsterdam (2007), pp. 527-621

Cité par Sources :