@article{ASENS_2001_4_34_1_79_0, author = {Schlenker, Jean-Marc}, title = {Surfaces \`a courbure extrins\`eque n\'egative dans l'espace hyperbolique}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {79--130}, publisher = {Elsevier}, volume = {4e s{\'e}rie, 34}, number = {1}, year = {2001}, doi = {10.1016/s0012-9593(00)01057-0}, mrnumber = {1833091}, zbl = {1029.53068}, language = {fr}, url = {http://archive.numdam.org/articles/10.1016/s0012-9593(00)01057-0/} }
TY - JOUR AU - Schlenker, Jean-Marc TI - Surfaces à courbure extrinsèque négative dans l'espace hyperbolique JO - Annales scientifiques de l'École Normale Supérieure PY - 2001 SP - 79 EP - 130 VL - 34 IS - 1 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/s0012-9593(00)01057-0/ DO - 10.1016/s0012-9593(00)01057-0 LA - fr ID - ASENS_2001_4_34_1_79_0 ER -
%0 Journal Article %A Schlenker, Jean-Marc %T Surfaces à courbure extrinsèque négative dans l'espace hyperbolique %J Annales scientifiques de l'École Normale Supérieure %D 2001 %P 79-130 %V 34 %N 1 %I Elsevier %U http://archive.numdam.org/articles/10.1016/s0012-9593(00)01057-0/ %R 10.1016/s0012-9593(00)01057-0 %G fr %F ASENS_2001_4_34_1_79_0
Schlenker, Jean-Marc. Surfaces à courbure extrinsèque négative dans l'espace hyperbolique. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 34 (2001) no. 1, pp. 79-130. doi : 10.1016/s0012-9593(00)01057-0. http://archive.numdam.org/articles/10.1016/s0012-9593(00)01057-0/
[1] The geometry of surfaces in Euclidean spaces, in: , (Eds.), Geometry III, Chapter I, Springer-Verlag, 1992, pp. 1-86, (Encyclopaedia of Mathematical Sciences, Vol. 48). | MR | Zbl
, ,[2] Apparition of singularities on surfaces with negative curvature, Mat. Sbornik 64 ((106) 2) (1964) 286-320. | MR | Zbl
,[3] Surfaces with a slowly changing negative curvature, Russian Math. Surveys 5 (131) (1966) 1-56. | MR | Zbl
,[4] Hyperbolic problems in the theory of surfaces, in: Proc. Internat. Congr. Math. (Moscow, 1966), Mir, Moscow, 1968, pp. 177-188. | MR | Zbl
,[5] Riemannian Geometry, Springer-Verlag, 1987. | MR | Zbl
, , ,[6] Über Fläschen von konstanter Gaußscher Krummung, Trans. Amer. Math. Soc. 2 (1901) 87-99. | JFM
,[7] Realization in R3 of complete Riemannian manifolds with negative curvature, Comm. Anal. Geom. 1 (3-4) (1993) 487-514. | Zbl
,[8] Efimov's theorem about complete immersed surfaces of negative curvature, Adv. in Math. 8 (1972) 474-543. | MR | Zbl
,[9] Immersions isométriques elliptiques et courbes pseudo-holomorphes, J. Differential Geom. 30 (1989) 395-424. | MR | Zbl
,[10] Problèmes de Monge-Ampère, courbes holomorphes et laminations, Geom. Funct. Anal. 7 (3) (1997) 496-534. | MR | Zbl
,[11] Regular realization in the large of two-dimensional metrics of negative curvature, Dokl. Akad. Nauk SSSR 170 (1966) 786-789. | MR | Zbl
,[12] Small parameters in the theory of isometric imbeddings of two-dimensional Riemannian manifolds in Euclidean spaces, in: Some Questions of Differential Geometry in the Large, Amer. Math. Soc, Providence, RI, 1996, pp. 151-192. | MR | Zbl
, ,[13] An isolated point on a surface of negative curvature with a regular metric, Soviet Math. 3 (1962) 473-477. | Zbl
,[14] Surfaces of negative curvature, in: , (Eds.), Geometry III, Chapter II, Springer-Verlag, 1992, pp. 87-178, (Encyclopaedia of Mathematical Sciences, Vol. 48). | MR | Zbl
,[15] Surfaces convexes dans des espaces lorentziens à courbure constante, Comm. Anal. Geom. 4 (1996) 285-331. | MR | Zbl
,[16] Complete surfaces with negative extrinsic curvature, Preprint, 1999, http://xxx.lanl.gov/abs/math.DG/9912101.
,[17] The global isometric immersion in R3 of certain metrics of nonpositive curvature, Dokl. Akad. Nauk SSSR 215 (1974) 61-63. | MR | Zbl
,[18] Efimov's inequality and other inequalities in a sphere, in: Geometry and Topology of Submanifolds, IV (Leuven, 1991), World Sci. Publishing, River Edge, NJ, 1992, pp. 76-86. | MR | Zbl
,[19] A Comprehensive Introduction to Geometry, Vols. I-V, Publish or perish, 1970-1975. | MR | Zbl
,[20] Efimov's theorem in dimension greater than two, Invent. Math. 90 (1987) 443-450. | EuDML | MR | Zbl
, ,[21] Global regular isometric embedding of two-dimensional metrics with nonpositive curvature, Mat. Sbornik 183 (7) (1992) 65-80. | MR | Zbl
,Cited by Sources: