Structures géométriques holomorphes sur les variétés complexes compactes
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 34 (2001) no. 4, pp. 557-571.
@article{ASENS_2001_4_34_4_557_0,
     author = {Dumitrescu, Sorin},
     title = {Structures g\'eom\'etriques holomorphes sur les vari\'et\'es complexes compactes},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {557--571},
     publisher = {Elsevier},
     volume = {4e s{\'e}rie, 34},
     number = {4},
     year = {2001},
     doi = {10.1016/s0012-9593(01)01070-9},
     mrnumber = {1852010},
     zbl = {1016.32012},
     language = {fr},
     url = {http://archive.numdam.org/articles/10.1016/s0012-9593(01)01070-9/}
}
TY  - JOUR
AU  - Dumitrescu, Sorin
TI  - Structures géométriques holomorphes sur les variétés complexes compactes
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2001
SP  - 557
EP  - 571
VL  - 34
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/s0012-9593(01)01070-9/
DO  - 10.1016/s0012-9593(01)01070-9
LA  - fr
ID  - ASENS_2001_4_34_4_557_0
ER  - 
%0 Journal Article
%A Dumitrescu, Sorin
%T Structures géométriques holomorphes sur les variétés complexes compactes
%J Annales scientifiques de l'École Normale Supérieure
%D 2001
%P 557-571
%V 34
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/s0012-9593(01)01070-9/
%R 10.1016/s0012-9593(01)01070-9
%G fr
%F ASENS_2001_4_34_4_557_0
Dumitrescu, Sorin. Structures géométriques holomorphes sur les variétés complexes compactes. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 34 (2001) no. 4, pp. 557-571. doi : 10.1016/s0012-9593(01)01070-9. http://archive.numdam.org/articles/10.1016/s0012-9593(01)01070-9/

[1] Akhiezer D., Lie Group Actions in Complex Analysis, Aspects of Mathematics, 1995. | MR | Zbl

[2] Beauville A., Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom. 18 (1983) 755-782. | MR | Zbl

[3] Benoist Y., Orbites des structures rigides (d'après M. Gromov), in: Feuilletages et Systèmes Intégrables (Montpellier, 1995), Birkhäuser, Boston, 1997, pp. 1-17. | MR | Zbl

[4] Bogomolov F., Classification of surfaces of class VII0 with b2=0, Math. USSR Izvestija 10 (2) (1976) 255-269. | Zbl

[5] Bogomolov F., Holomorphic tensors and vector bundles on projective varieties, Math. USSR Izvestija 13 (3) (1979) 499-555. | Zbl

[6] Bryant R., Chern S., Gardner R., Goldschmidt H., Griffiths P., Exterior Differential Systems, M.S.R.I. Publications, 18, Springer-Verlag, 1991. | MR | Zbl

[7] Campana F., Demailly J.-P., Peternell T., The algebraic dimension of compact complex threefolds with vanishing second Betti number, Compositio Math. 112 (1) (1998) 77-91. | MR | Zbl

[8] Dumitrescu S., Structures géométriques holomorphes, Thèse E.N.S.-Lyon, 1999. | MR

[9] Fulton W., Harris J., Representation Theory, Graduate Texts in Mathematics, 129, Springer-Verlag, 1991. | MR | Zbl

[10] Ghys É., Déformations des structures complexes sur les espaces homogènes de SL(2,C), J. Reine Angew. Math. 468 (1995) 113-138. | MR | Zbl

[11] Ghys É., Feuilletages holomorphes de codimension un sur les espaces homogènes complexes, Ann. Fac. Sci. Toulouse Math. (6) 5 (3) (1996) 493-519. | Numdam | MR | Zbl

[12] Grauert H., Remmert R., Über kompakte homogene komplexe Mannigfaltigkeiten, Arch. Math. 13 (1962) 498-507. | MR | Zbl

[13] Gromov M., Rigid transformation groups, in: Bernard D., Choquet-Bruhat Y. (Eds.), Géométrie Différentielle, Vol. 33, Hermann, 1988, pp. 65-139. | MR | Zbl

[14] Horst C., Kobayashi S., Topics in complex differential geometry, DMV Semin 3 (1983) 1-64. | MR | Zbl

[15] Huckleberry A., Kebekus S., Peternell T., Group actions on S6 and complex structures on P3(C), Duke Math. J. 102 (1) (2000) 101-124. | MR | Zbl

[16] Humpreys J., Linear Algebraic Groups, Graduate Texts in Mathematics, 21, Springer-Verlag, 1975. | MR | Zbl

[17] Hwang J.-M., Mok N., Uniruled projective manifolds with irreducible reductive G-structure, J. Reine Angew. Math. 490 (1997) 55-64. | MR | Zbl

[18] Inoue M., Kobayashi S., Ochiai T., Holomorphic affine connections on compact complex surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (2) (1980) 247-264. | MR | Zbl

[19] Kobayashi S., First Chern class and holomorphic tensor fields, Nagoya Math. J. 77 (1980) 5-11. | MR | Zbl

[20] Kobayashi S., The first Chern class and holomorphic symmetric tensor fields, J. Math. Soc. Japan 32 (2) (1980) 325-329. | MR | Zbl

[21] Kolar I., Michor P., Slovak J., Natural Operations in Differential Geometry, Springer-Verlag, 1991. | MR | Zbl

[22] Lescure F., Sur certains espaces fibrés kaehlériens, J. Math. Pures et Appl. 57 (1978) 181-190. | MR | Zbl

[23] Malgrange B., L'involutivité générique des systèmes différentiels analytiques, C. R. Acad. Sci. Paris, Série 1 326 (1998) 863-866. | MR | Zbl

[24] Moishezon B., On n dimensional compact varieties with n independent meromorphic functions, Amer. Math. Soc. Transl. 63 (1967) 51-77. | Zbl

[25] Mumford D., Introduction to Algebraic Geometry, Harvard University, 1966.

[26] Nomizu K., On local and global existence of Killing vector fields, Ann. of Math. (2) 72 (1960) 105-120. | MR | Zbl

[27] Popov V., Vinberg E., Invariant theory, Algebraic Geometry 4, E.M.S. 55 (1991) 123-280. | Zbl

[28] Yau S.T., On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Comm. Pure Appl. Math. 31 (3) (1978) 339-411. | Zbl

Cited by Sources: