@article{ASENS_2001_4_34_5_741_0, author = {Kable, Anthony C.}, title = {The tensor product of exceptional representations on the general linear group}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {741--769}, publisher = {Elsevier}, volume = {Ser. 4, 34}, number = {5}, year = {2001}, doi = {10.1016/s0012-9593(01)01075-8}, mrnumber = {1862025}, zbl = {1005.20033}, language = {en}, url = {http://archive.numdam.org/articles/10.1016/s0012-9593(01)01075-8/} }
TY - JOUR AU - Kable, Anthony C. TI - The tensor product of exceptional representations on the general linear group JO - Annales scientifiques de l'École Normale Supérieure PY - 2001 SP - 741 EP - 769 VL - 34 IS - 5 PB - Elsevier UR - http://archive.numdam.org/articles/10.1016/s0012-9593(01)01075-8/ DO - 10.1016/s0012-9593(01)01075-8 LA - en ID - ASENS_2001_4_34_5_741_0 ER -
%0 Journal Article %A Kable, Anthony C. %T The tensor product of exceptional representations on the general linear group %J Annales scientifiques de l'École Normale Supérieure %D 2001 %P 741-769 %V 34 %N 5 %I Elsevier %U http://archive.numdam.org/articles/10.1016/s0012-9593(01)01075-8/ %R 10.1016/s0012-9593(01)01075-8 %G en %F ASENS_2001_4_34_5_741_0
Kable, Anthony C. The tensor product of exceptional representations on the general linear group. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 34 (2001) no. 5, pp. 741-769. doi : 10.1016/s0012-9593(01)01075-8. http://archive.numdam.org/articles/10.1016/s0012-9593(01)01075-8/
[1] Block-compatible metaplectic cocycles, J. Reine Angew. Math. 507 (1999) 131-163. | MR | Zbl
, , ,[2] Representations of the group GL(n,F) where F is a nonarchimedean local field, Usp. Mat. Nauk. 31 (1976) 5-70. | MR | Zbl
, ,[3] Induced representations of reductive p-adic groups I, Ann. Scient. École Norm. Sup. 10 (1977) 441-472. | Numdam | MR | Zbl
, ,[4] Linear Algebraic Groups, Graduate Texts in Math., 126, Springer-Verlag, New York, 1991. | MR | Zbl
,[5] Symmetric square L-functions on GL(r), Ann. of Math. 136 (1992) 137-205. | MR | Zbl
, ,[6] Metaplectic correspondence, Publ. Math. Inst. Hautes Études Sci. 64 (1989) 53-110. | Numdam | MR | Zbl
, ,[7] Explicit realization of a metaplectic representation, J. d'Anal. Math. 55 (1990) 17-39. | MR | Zbl
, , ,[8] Distinguished representations and modular forms of half-integral weight, Invent. Math. 59 (1980) 145-188. | MR | Zbl
, ,[9] Representations of GL(n,K), in: Lie Groups and Their Representations 2, Akadèmiai Kiado, Budapest, 1974.
, ,[10] The unitary dual of the universal covering group of GL(n,R), Duke Math. J. 61 (1990) 705-745. | MR | Zbl
,[11] The main involutions of the metaplectic group, Proc. Amer. Math. Soc. 127 (1999) 955-962. | MR | Zbl
,[12] Metaplectic forms, Publ. Math. Inst. Hautes Études Sci. 59 (1984) 35-142. | EuDML | Numdam | MR | Zbl
, ,[13] Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Scient. École Norm. Sup. 2 (1969) 1-62. | EuDML | Numdam | MR | Zbl
,[14] Some applications of seesaw duality to branching laws, Math. Ann. 304 (1996) 1-20. | MR | Zbl
,[15] On the tensor product of theta representations of GL(3), Pacific J. Math. 154 (1992) 369-380. | MR | Zbl
,[16] Sur certains groupes d'opérateurs unitaires, Acta Math. 111 (1964) 143-211. | MR | Zbl
,[17] Basic Number Theory, Grund. Math. Wiss., 144, Springer-Verlag, New York, 1974. | MR | Zbl
,Cité par Sources :