Maxwell strata in sub-riemannian problem on the group of motions of a plane
ESAIM: Control, Optimisation and Calculus of Variations, Volume 16 (2010) no. 2, pp. 380-399.

The left-invariant sub-riemannian problem on the group of motions of a plane is considered. Sub-riemannian geodesics are parameterized by Jacobi's functions. Discrete symmetries of the problem generated by reflections of pendulum are described. The corresponding Maxwell points are characterized, on this basis an upper bound on the cut time is obtained.

DOI: 10.1051/cocv/2009004
Classification: 49J15,  93B29,  93C10,  53C17,  22E30
Keywords: optimal control, sub-riemannian geometry, differential-geometric methods, left-invariant problem, Lie group, Pontryagin maximum principle, symmetries, exponential mapping, Maxwell stratum
@article{COCV_2010__16_2_380_0,
     author = {Moiseev, Igor and Sachkov, Yuri L.},
     title = {Maxwell strata in sub-riemannian problem on the group of motions of a plane},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {380--399},
     publisher = {EDP-Sciences},
     volume = {16},
     number = {2},
     year = {2010},
     doi = {10.1051/cocv/2009004},
     mrnumber = {2654199},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2009004/}
}
TY  - JOUR
AU  - Moiseev, Igor
AU  - Sachkov, Yuri L.
TI  - Maxwell strata in sub-riemannian problem on the group of motions of a plane
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2010
DA  - 2010///
SP  - 380
EP  - 399
VL  - 16
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2009004/
UR  - https://www.ams.org/mathscinet-getitem?mr=2654199
UR  - https://doi.org/10.1051/cocv/2009004
DO  - 10.1051/cocv/2009004
LA  - en
ID  - COCV_2010__16_2_380_0
ER  - 
%0 Journal Article
%A Moiseev, Igor
%A Sachkov, Yuri L.
%T Maxwell strata in sub-riemannian problem on the group of motions of a plane
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2010
%P 380-399
%V 16
%N 2
%I EDP-Sciences
%U https://doi.org/10.1051/cocv/2009004
%R 10.1051/cocv/2009004
%G en
%F COCV_2010__16_2_380_0
Moiseev, Igor; Sachkov, Yuri L. Maxwell strata in sub-riemannian problem on the group of motions of a plane. ESAIM: Control, Optimisation and Calculus of Variations, Volume 16 (2010) no. 2, pp. 380-399. doi : 10.1051/cocv/2009004. http://archive.numdam.org/articles/10.1051/cocv/2009004/

[1] A.A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dyn. Control Systems 2 (1996) 321-358. | Zbl

[2] A.A. Agrachev and Yu.L. Sachkov, Control Theory from the Geometric Viewpoint. Springer-Verlag, Berlin (2004). | Zbl

[3] A.M. Bloch, J. Baillieul, P.E. Crouch and J. Marsden, Nonholonomic Mechanics and Control. Springer (2003).

[4] U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S3, SO(3), SL(2) and Lens Spaces. SIAM J. Control Optim. 47 (2008) 1851-1878. | Zbl

[5] R. Brockett, Control theory and singular Riemannian geometry, in New Directions in Applied Mathematics, P. Hilton and G. Young Eds., Springer-Verlag, New York (1981) 11-27. | Zbl

[6] C. El-Alaoui, J.P. Gauthier and I. Kupka, Small sub-Riemannian balls on 3 . J. Dyn. Control Systems 2 (1996) 359-421. | Zbl

[7] V. Jurdjevic, Geometric Control Theory. Cambridge University Press (1997). | Zbl

[8] J.P. Laumond, Nonholonomic motion planning for mobile robots, Lecture notes in Control and Information Sciences 229. Springer (1998).

[9] F. Monroy-Perez and A. Anzaldo-Meneses, The step-2 nilpotent (n, n(n+1)/2) sub-Riemannian geometry. J. Dyn. Control Systems 12 (2006) 185-216. | Zbl

[10] R. Montgomery, A Tour of Subriemannian Geometries, Their Geodesics and Applications. American Mathematical Society (2002). | Zbl

[11] O. Myasnichenko, Nilpotent (3, 6) sub-Riemannian problem. J. Dyn. Control Systems 8 (2002) 573-597. | Zbl

[12] O. Myasnichenko, Nilpotent (n, n(n+1)/2) sub-Riemannian problem. J. Dyn. Control Systems 12 (2006) 87-95. | Zbl

[13] J. Petitot, The neurogeometry of pinwheels as a sub-Riemannian contact stucture. J. Physiology - Paris 97 (2003) 265-309.

[14] L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. Wiley Interscience (1962). | Zbl

[15] Yu.L. Sachkov, Exponential map in the generalized Dido's problem. Mat. Sbornik 194 (2003) 63-90 (in Russian). English translation in: Sb. Math. 194 (2003) 1331-1359. | Zbl

[16] Yu.L. Sachkov, Discrete symmetries in the generalized Dido problem. Mat. Sbornik 197 (2006) 95-116 (in Russian). English translation in: Sb. Math. 197 (2006) 235-257. | Zbl

[17] Yu.L. Sachkov, The Maxwell set in the generalized Dido problem. Mat. Sbornik 197 (2006) 123-150 (in Russian). English translation in: Sb. Math. 197 (2006) 595-621. | Zbl

[18] Yu.L. Sachkov, Complete description of the Maxwell strata in the generalized Dido problem. Mat. Sbornik 197 (2006) 111-160 (in Russian). English translation in: Sb. Math. 197 (2006) 901-950. | Zbl

[19] Yu.L. Sachkov, Maxwell strata in Euler's elastic problem. J. Dyn. Control Systems 14 (2008) 169-234. | Zbl

[20] Yu.L. Sachkov, Conjugate points in Euler's elastic problem. J. Dyn. Control Systems 14 (2008) 409-439. | Zbl

[21] Yu.L. Sachkov, Conjugate and cut time in the sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV (Submitted). | Numdam

[22] A.M. Vershik and V.Y. Gershkovich, Nonholonomic Dynamical Systems, Geometry of distributions and variational problems (Russian), in Itogi Nauki i Tekhniki: Sovremennye Problemy Matematiki, Fundamental'nyje Napravleniya 16, VINITI, Moscow (1987) 5-85. English translation in: Encyclopedia of Mathematical Sciences 16, Dynamical Systems 7, Springer Verlag. | Zbl

[23] E.T. Whittaker and G.N. Watson, A Course of Modern Analysis, An introduction to the general theory of infinite processes and of analytic functions; with an account of principal transcendental functions. Cambridge University Press, Cambridge (1996). | Zbl

Cited by Sources: