This paper is devoted to an analysis of vortex-nucleation for a Ginzburg-Landau functional with discontinuous constraint. This functional has been proposed as a model for vortex-pinning, and usually accounts for the energy resulting from the interface of two superconductors. The critical applied magnetic field for vortex nucleation is estimated in the London singular limit, and as a by-product, results concerning vortex-pinning and boundary conditions on the interface are obtained.
Mots clés : generalized Ginzburg-Landau energy functional, proximity effects, global minimizers, unique positive solution, vortices
@article{COCV_2010__16_3_545_0, author = {Kachmar, Ayman}, title = {Magnetic vortices for a {Ginzburg-Landau} type energy with discontinuous constraint}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {545--580}, publisher = {EDP-Sciences}, volume = {16}, number = {3}, year = {2010}, doi = {10.1051/cocv/2009009}, mrnumber = {2674626}, zbl = {1203.35272}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2009009/} }
TY - JOUR AU - Kachmar, Ayman TI - Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2010 SP - 545 EP - 580 VL - 16 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2009009/ DO - 10.1051/cocv/2009009 LA - en ID - COCV_2010__16_3_545_0 ER -
%0 Journal Article %A Kachmar, Ayman %T Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint %J ESAIM: Control, Optimisation and Calculus of Variations %D 2010 %P 545-580 %V 16 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2009009/ %R 10.1051/cocv/2009009 %G en %F COCV_2010__16_3_545_0
Kachmar, Ayman. Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. ESAIM: Control, Optimisation and Calculus of Variations, Tome 16 (2010) no. 3, pp. 545-580. doi : 10.1051/cocv/2009009. http://archive.numdam.org/articles/10.1051/cocv/2009009/
[1] Pinning phenomena in the Ginzburg-Landau model of superconductivity. J. Math. Pures Appl. 80 (2001) 339-372. | Zbl
, and ,[2] Giant vortex and the breakdown of strong pinning in a rotating Bose-Einstein condensate. Arch. Rational Mech. Anal. 178 (2005) 247-286. | Zbl
, and ,[3] Pinning effects and their breakdown for a Ginzburg-Landau model with normal inclusions. J. Math. Phys. 46 (2005) 095102. | Zbl
and ,[4] Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains. Comm. Pure Appl. Math. LIX (2006) 0036-0070. | Zbl
and ,[5] Vortex pinning with bounded fields for the Ginzburg-Landau equation. Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003) 705-729. | Numdam | Zbl
, and ,[6] Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint. II. Comm. Pure Appl. Anal. 8 (2009) 977-998. | Zbl
and ,[7] Vortices for a variational problem related to superconductivity. Ann. Inst. H. Poincaré Anal. Non Linéaire 12 (1995) 243-303. | Numdam | Zbl
and ,[8] Ginzburg-Landau vortices. Birkhäuser, Boston-Basel-Berlin (1994). | Zbl
, and ,[9] Vortex pinning by inhomogenities in type II superconductors. Phys. D 108 (1997) 397-407. | Zbl
and ,[10] A Ginzburg Landau type model of superconducting/normal junctions including Josephson junctions. European J. Appl. Math. 6 (1996) 97-114. | Zbl
, and ,[11] Superconductivity of metals and alloys. Benjamin (1966). | Zbl
,[12] Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Reviews 34 (1992) 529-560. | Zbl
, and ,[13] Surface nucleation and boundary conditions in superconductors. Phys. Rev. Lett. 23 (1969) 120.
and ,[14] Superconductors surrounded by normal materials. Proc. Roy. Soc. Edinburgh Sec. A 135 (2005) 331-356. | Zbl
,[15] The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model. SIAM J. Math. Anal. 30 (1999) 341-359. | Zbl
and ,[16] Wetting phase transition and superconductivity: The role of suface enhancement of the order parameter in the GL theory. Procceding of the NATO ASI, Albena, Bulgaria (1998).
, and ,[17] On the ground state energy for a magnetic Schrödinger operator and the effect of the de Gennes boundary condition. J. Math. Phys. 47 (2006) 072106. | Zbl
,[18] On the perfect superconducting state for a generalized Ginzburg-Landau equation. Asymptot. Anal. 54 (2007) 125-164. | Zbl
,[19] On the stability of normal states for a generalized Ginzburg-Landau model. Asymptot. Anal. 55 (2007) 145-201. | Zbl
,[20] Weyl asymptotics for magnetic Schrödinger opertors and de Gennes' boundary condition. Rev. Math. Phys. 20 (2008) 901-932. | Zbl
,[21] Magnetic Ginzburg-Landau functional with discontinuous constraint. C. R. Math. Acad. Sci. Paris 346 (2008) 297-300. | Zbl
,[22] Limiting jump conditions for Josephson junctions in Ginzburg-Landau theory. Differential Integral Equations 21 (2008) 95-130.
,[23] Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math. 77 (1999) 1-26. | Zbl
and ,[24] Ginzburg-Landau equation with de Gennes boundary condition. J. Diff. Equ. 129 (1996) 136-165. | Zbl
and ,[25] An Lp estimate for the gradient of solutions of second order elliptic equations. Ann. Sc. Norm. Sup. Pisa 17 (1963) 189-206. | Numdam | Zbl
,[26] Effects of confinement and surface enhancement on superconductivity. Phys. Rev. B 62 (2000) 661-666.
and ,[27] Six lectures in superconductivity, in Boundaries, Interfaces and Transitions (Banff, AB, 1995), CRM Proc., Lecture Notes 13, Amer. Math. Soc., Providence, RI (1998) 163-184. | Zbl
,[28] Ginzburg-Landau minimizers near the first critical field have bounded vorticity. Calc. Var. Partial Differ. Equ. 17 (2003) 17-28. | Zbl
and ,[29] Vortices for the magnetic Ginzburg-Landau model, Progress in Nonlinear Differential Equations and their Applications 70. Birkhäuser Boston (2007). | Zbl
and ,[30] Local minimizers for the Ginzburg-Landau energy near critical magnetic field. I. Commun. Contemp. Math. 1 (1999) 213-254. | Zbl
,[31] Local minimizers for the Ginzburg-Landau energy near critical magnetic field. II. Commun. Contemp. Math. 1 (1999) 295-333. | Zbl
,[32] Pinning of magnetic vortices by an external potential. St. Petresburg Math. J. 16 (2005) 211-236. | Zbl
and ,[33] Équations elliptiques du second ordre à coefficients discontinus. Séminaire de Mathématiques Supérieures No. 16 (Été, 1965), Les Presses de l'Université de Montréal, Montréal, Québec (1966) 326 p. | Zbl
,Cité par Sources :