Vortex pinning with bounded fields for the Ginzburg-Landau equation
Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 4, pp. 705-729.
@article{AIHPC_2003__20_4_705_0,
     author = {Andre, Nelly and Bauman, Patricia and Phillips, Dan},
     title = {Vortex pinning with bounded fields for the {Ginzburg-Landau} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {705--729},
     publisher = {Elsevier},
     volume = {20},
     number = {4},
     year = {2003},
     doi = {10.1016/S0294-1449(02)00021-5},
     zbl = {1040.35108},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1016/S0294-1449(02)00021-5/}
}
TY  - JOUR
AU  - Andre, Nelly
AU  - Bauman, Patricia
AU  - Phillips, Dan
TI  - Vortex pinning with bounded fields for the Ginzburg-Landau equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2003
SP  - 705
EP  - 729
VL  - 20
IS  - 4
PB  - Elsevier
UR  - http://archive.numdam.org/articles/10.1016/S0294-1449(02)00021-5/
DO  - 10.1016/S0294-1449(02)00021-5
LA  - en
ID  - AIHPC_2003__20_4_705_0
ER  - 
%0 Journal Article
%A Andre, Nelly
%A Bauman, Patricia
%A Phillips, Dan
%T Vortex pinning with bounded fields for the Ginzburg-Landau equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2003
%P 705-729
%V 20
%N 4
%I Elsevier
%U http://archive.numdam.org/articles/10.1016/S0294-1449(02)00021-5/
%R 10.1016/S0294-1449(02)00021-5
%G en
%F AIHPC_2003__20_4_705_0
Andre, Nelly; Bauman, Patricia; Phillips, Dan. Vortex pinning with bounded fields for the Ginzburg-Landau equation. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 4, pp. 705-729. doi : 10.1016/S0294-1449(02)00021-5. http://archive.numdam.org/articles/10.1016/S0294-1449(02)00021-5/

[1] A. Aftalion, E. Sandier, S. Serfaty, Pinning phenomena in the Ginzburg-Landau model of superconductivity, Preprint. | MR

[2] Bethuel F., The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (3-4) (1991) 153-206. | MR | Zbl

[3] Chapman S.J., Du Q., Gunzburger M.D., A Ginzburg-Landau type model of superconducting/normal junctions including Josephson junctions, Europ. J. Appl. Math. 6 (1995) 97-114. | MR | Zbl

[4] Chapman S.J., Richardson G., Vortex pinning by inhomogeneities in type II superconductors, Phys. D 108 (4) (1997) 397-407. | MR | Zbl

[5] Giorgi T., Phillips D., The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (2) (1999) 341-359. | MR | Zbl

[6] Jaffe A., Taubes C., Vortices Monopoles, Birkhäuser, 1980. | MR | Zbl

[7] Jerrard R., Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (4) (1999) 721-746. | MR | Zbl

[8] Jimbo S., Morita Y., Ginzburg-Landau equations and stable solutions in a rotational domain, SIAM J. Math. Anal. 27 (5) (1996) 1360-1385. | MR | Zbl

[9] Jimbo S., Zhai J., Ginzburg-Landau equation with magnetic effect: non-simply-connected domains, J. Math. Soc. Japan 50 (3) (1998) 663-684. | MR | Zbl

[10] Likharev K., Superconducting weak links, Rev. Mod. Phys. 51 (1979) 101-159.

[11] E. Sandier, S. Serfaty, Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field, Annals IHP, Analyse non linéaire, to appear. | Numdam | MR | Zbl

[12] E. Sandier, S. Serfaty, On the energy of type II superconductors in the mixed phase, Rev. Math. Phys., to appear. | MR | Zbl

[13] Rubinstein J., Sternberg P., Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents, Comm. Math. Phys. 179 (1) (1996) 257-263. | MR | Zbl

[14] Schoen R., Uhlenbeck K., Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (2) (1983) 253-268. | MR | Zbl

Cité par Sources :