Vortex pinning with bounded fields for the Ginzburg-Landau equation
Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 4, pp. 705-729.
@article{AIHPC_2003__20_4_705_0,
     author = {Andre, Nelly and Bauman, Patricia and Phillips, Dan},
     title = {Vortex pinning with bounded fields for the {Ginzburg-Landau} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {705--729},
     publisher = {Elsevier},
     volume = {20},
     number = {4},
     year = {2003},
     doi = {10.1016/S0294-1449(02)00021-5},
     zbl = {1040.35108},
     language = {en},
     url = {https://www.numdam.org/articles/10.1016/S0294-1449(02)00021-5/}
}
TY  - JOUR
AU  - Andre, Nelly
AU  - Bauman, Patricia
AU  - Phillips, Dan
TI  - Vortex pinning with bounded fields for the Ginzburg-Landau equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2003
SP  - 705
EP  - 729
VL  - 20
IS  - 4
PB  - Elsevier
UR  - https://www.numdam.org/articles/10.1016/S0294-1449(02)00021-5/
DO  - 10.1016/S0294-1449(02)00021-5
LA  - en
ID  - AIHPC_2003__20_4_705_0
ER  - 
%0 Journal Article
%A Andre, Nelly
%A Bauman, Patricia
%A Phillips, Dan
%T Vortex pinning with bounded fields for the Ginzburg-Landau equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2003
%P 705-729
%V 20
%N 4
%I Elsevier
%U https://www.numdam.org/articles/10.1016/S0294-1449(02)00021-5/
%R 10.1016/S0294-1449(02)00021-5
%G en
%F AIHPC_2003__20_4_705_0
Andre, Nelly; Bauman, Patricia; Phillips, Dan. Vortex pinning with bounded fields for the Ginzburg-Landau equation. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 4, pp. 705-729. doi : 10.1016/S0294-1449(02)00021-5. https://www.numdam.org/articles/10.1016/S0294-1449(02)00021-5/

[1] A. Aftalion, E. Sandier, S. Serfaty, Pinning phenomena in the Ginzburg-Landau model of superconductivity, Preprint. | MR

[2] Bethuel F., The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (3-4) (1991) 153-206. | MR | Zbl

[3] Chapman S.J., Du Q., Gunzburger M.D., A Ginzburg-Landau type model of superconducting/normal junctions including Josephson junctions, Europ. J. Appl. Math. 6 (1995) 97-114. | MR | Zbl

[4] Chapman S.J., Richardson G., Vortex pinning by inhomogeneities in type II superconductors, Phys. D 108 (4) (1997) 397-407. | MR | Zbl

[5] Giorgi T., Phillips D., The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (2) (1999) 341-359. | MR | Zbl

[6] Jaffe A., Taubes C., Vortices Monopoles, Birkhäuser, 1980. | MR | Zbl

[7] Jerrard R., Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (4) (1999) 721-746. | MR | Zbl

[8] Jimbo S., Morita Y., Ginzburg-Landau equations and stable solutions in a rotational domain, SIAM J. Math. Anal. 27 (5) (1996) 1360-1385. | MR | Zbl

[9] Jimbo S., Zhai J., Ginzburg-Landau equation with magnetic effect: non-simply-connected domains, J. Math. Soc. Japan 50 (3) (1998) 663-684. | MR | Zbl

[10] Likharev K., Superconducting weak links, Rev. Mod. Phys. 51 (1979) 101-159.

[11] E. Sandier, S. Serfaty, Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field, Annals IHP, Analyse non linéaire, to appear. | Numdam | MR | Zbl

[12] E. Sandier, S. Serfaty, On the energy of type II superconductors in the mixed phase, Rev. Math. Phys., to appear. | MR | Zbl

[13] Rubinstein J., Sternberg P., Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents, Comm. Math. Phys. 179 (1) (1996) 257-263. | MR | Zbl

[14] Schoen R., Uhlenbeck K., Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (2) (1983) 253-268. | MR | Zbl

  • Wei, Juncheng; Wu, Yuanze Infinitely many multi-vortex solutions of the magnetic Ginzburg–Landau equation with external potentials in R2, Journal of Mathematical Physics, Volume 62 (2021) no. 4 | DOI:10.1063/5.0028065
  • Dos Santos, Mickaël Explicit expression of the microscopic renormalized energy for a pinned Ginzburg–Landau functional, Journal of Elliptic and Parabolic Equations, Volume 5 (2019) no. 2, p. 281 | DOI:10.1007/s41808-019-00042-z
  • Duerinckx, Mitia; Serfaty, Sylvia Mean-Field Dynamics for Ginzburg–Landau Vortices with Pinning and Forcing, Annals of PDE, Volume 4 (2018) no. 2 | DOI:10.1007/s40818-018-0053-0
  • Berlyand, Leonid; Golovaty, Dmitry; Iaroshenko, Oleksandr; Rybalko, Volodymyr On approximation of Ginzburg–Landau minimizers by S1-valued maps in domains with vanishingly small holes, Journal of Differential Equations, Volume 264 (2018) no. 2, p. 1317 | DOI:10.1016/j.jde.2017.09.037
  • Karali, Georgia; Sourdis, Christos The Ground State of a Gross–Pitaevskii Energy with General Potential in the Thomas–Fermi Limit, Archive for Rational Mechanics and Analysis, Volume 217 (2015) no. 2, p. 439 | DOI:10.1007/s00205-015-0844-3
  • Pakylak, A.; Ting, F.; Wei, J. Multi-Vortex Solutions to Ginzburg–Landau Equations with External Potential, Archive for Rational Mechanics and Analysis, Volume 204 (2012) no. 1, p. 313 | DOI:10.1007/s00205-011-0478-z
  • ZHAI, JIAN; XUE, SHUAI LOCAL MINIMIZERS WITH VORTEX PINNING FOR A GINZBURG–LANDAU FUNCTIONAL FOR SUPERCONDUCTING HOLLOW SPHERES, Communications in Contemporary Mathematics, Volume 14 (2012) no. 01, p. 1250004 | DOI:10.1142/s0219199712500046
  • DOS SANTOS, MICKAËL; MIRONESCU, PETRU; MISIATS, OLEKSANDR THE GINZBURG–LANDAU FUNCTIONAL WITH A DISCONTINUOUS AND RAPIDLY OSCILLATING PINNING TERM. PART I: THE ZERO DEGREE CASE, Communications in Contemporary Mathematics, Volume 13 (2011) no. 05, p. 885 | DOI:10.1142/s021919971100449x
  • Dos Santos, Mickaël; Misiats, Oleksandr Ginzburg-Landau model with small pinning domains, Networks Heterogeneous Media, Volume 6 (2011) no. 4, p. 715 | DOI:10.3934/nhm.2011.6.715
  • Kachmar, Ayman Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint, ESAIM: Control, Optimisation and Calculus of Variations, Volume 16 (2010) no. 3, p. 545 | DOI:10.1051/cocv/2009009
  • Ting, F Effective dynamics of multi-vortices in an external potential for the Ginzburg–Landau gradient flow, Nonlinearity, Volume 23 (2010) no. 1, p. 179 | DOI:10.1088/0951-7715/23/1/010
  • Giorgi, Tiziana; Smits, Robert G. Gauge Uniqueness of Solutions to the Ginzburg–Landau System for Small Superconducting Domains, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 1, p. 163 | DOI:10.1137/080745146
  • Gustafson, S.; Ting, F. Dynamic Stability and Instability of Pinned Fundamental Vortices, Journal of Nonlinear Science, Volume 19 (2009) no. 4, p. 341 | DOI:10.1007/s00332-009-9039-0
  • Zhai, Jian; Cai, Zhihui Local minimizers with vortex pinning to Ginzburg–Landau functional in three dimensions, Journal of Mathematical Analysis and Applications, Volume 345 (2008) no. 1, p. 535 | DOI:10.1016/j.jmaa.2008.04.036
  • Alama, Stan; Bronsard, Lia Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains, Communications on Pure and Applied Mathematics, Volume 59 (2006) no. 1, p. 36 | DOI:10.1002/cpa.20086
  • Aftalion, Amandine; Alama, Stan; Bronsard, Lia Giant Vortex and the Breakdown of Strong Pinning in a Rotating Bose-Einstein Condensate, Archive for Rational Mechanics and Analysis, Volume 178 (2005) no. 2, p. 247 | DOI:10.1007/s00205-005-0373-6
  • Alama, Stan; Bronsard, Lia Pinning effects and their breakdown for a Ginzburg–Landau model with normal inclusions, Journal of Mathematical Physics, Volume 46 (2005) no. 9 | DOI:10.1063/1.2010354
  • Macrì, Marta; Nolasco, Margherita; Ricciardi, Tonia Asymptotics for Selfdual Vortices on the Torus and on the Plane: A Gluing Technique, SIAM Journal on Mathematical Analysis, Volume 37 (2005) no. 1, p. 1 | DOI:10.1137/040619843

Cité par 18 documents. Sources : Crossref