@article{AIHPC_2003__20_4_705_0, author = {Andre, Nelly and Bauman, Patricia and Phillips, Dan}, title = {Vortex pinning with bounded fields for the {Ginzburg-Landau} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {705--729}, publisher = {Elsevier}, volume = {20}, number = {4}, year = {2003}, doi = {10.1016/S0294-1449(02)00021-5}, zbl = {1040.35108}, language = {en}, url = {https://www.numdam.org/articles/10.1016/S0294-1449(02)00021-5/} }
TY - JOUR AU - Andre, Nelly AU - Bauman, Patricia AU - Phillips, Dan TI - Vortex pinning with bounded fields for the Ginzburg-Landau equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2003 SP - 705 EP - 729 VL - 20 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/S0294-1449(02)00021-5/ DO - 10.1016/S0294-1449(02)00021-5 LA - en ID - AIHPC_2003__20_4_705_0 ER -
%0 Journal Article %A Andre, Nelly %A Bauman, Patricia %A Phillips, Dan %T Vortex pinning with bounded fields for the Ginzburg-Landau equation %J Annales de l'I.H.P. Analyse non linéaire %D 2003 %P 705-729 %V 20 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/S0294-1449(02)00021-5/ %R 10.1016/S0294-1449(02)00021-5 %G en %F AIHPC_2003__20_4_705_0
Andre, Nelly; Bauman, Patricia; Phillips, Dan. Vortex pinning with bounded fields for the Ginzburg-Landau equation. Annales de l'I.H.P. Analyse non linéaire, Tome 20 (2003) no. 4, pp. 705-729. doi : 10.1016/S0294-1449(02)00021-5. https://www.numdam.org/articles/10.1016/S0294-1449(02)00021-5/
[1] A. Aftalion, E. Sandier, S. Serfaty, Pinning phenomena in the Ginzburg-Landau model of superconductivity, Preprint. | MR
[2] The approximation problem for Sobolev maps between two manifolds, Acta Math. 167 (3-4) (1991) 153-206. | MR | Zbl
,[3] A Ginzburg-Landau type model of superconducting/normal junctions including Josephson junctions, Europ. J. Appl. Math. 6 (1995) 97-114. | MR | Zbl
, , ,[4] Vortex pinning by inhomogeneities in type II superconductors, Phys. D 108 (4) (1997) 397-407. | MR | Zbl
, ,[5] The breakdown of superconductivity due to strong fields for the Ginzburg-Landau model, SIAM J. Math. Anal. 30 (2) (1999) 341-359. | MR | Zbl
, ,[6] Vortices Monopoles, Birkhäuser, 1980. | MR | Zbl
, ,[7] Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal. 30 (4) (1999) 721-746. | MR | Zbl
,[8] Ginzburg-Landau equations and stable solutions in a rotational domain, SIAM J. Math. Anal. 27 (5) (1996) 1360-1385. | MR | Zbl
, ,[9] Ginzburg-Landau equation with magnetic effect: non-simply-connected domains, J. Math. Soc. Japan 50 (3) (1998) 663-684. | MR | Zbl
, ,[10] Superconducting weak links, Rev. Mod. Phys. 51 (1979) 101-159.
,[11] E. Sandier, S. Serfaty, Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field, Annals IHP, Analyse non linéaire, to appear. | Numdam | MR | Zbl
[12] E. Sandier, S. Serfaty, On the energy of type II superconductors in the mixed phase, Rev. Math. Phys., to appear. | MR | Zbl
[13] Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents, Comm. Math. Phys. 179 (1) (1996) 257-263. | MR | Zbl
, ,[14] Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (2) (1983) 253-268. | MR | Zbl
, ,- Infinitely many multi-vortex solutions of the magnetic Ginzburg–Landau equation with external potentials in R2, Journal of Mathematical Physics, Volume 62 (2021) no. 4 | DOI:10.1063/5.0028065
- Explicit expression of the microscopic renormalized energy for a pinned Ginzburg–Landau functional, Journal of Elliptic and Parabolic Equations, Volume 5 (2019) no. 2, p. 281 | DOI:10.1007/s41808-019-00042-z
- Mean-Field Dynamics for Ginzburg–Landau Vortices with Pinning and Forcing, Annals of PDE, Volume 4 (2018) no. 2 | DOI:10.1007/s40818-018-0053-0
- On approximation of Ginzburg–Landau minimizers by S1-valued maps in domains with vanishingly small holes, Journal of Differential Equations, Volume 264 (2018) no. 2, p. 1317 | DOI:10.1016/j.jde.2017.09.037
- The Ground State of a Gross–Pitaevskii Energy with General Potential in the Thomas–Fermi Limit, Archive for Rational Mechanics and Analysis, Volume 217 (2015) no. 2, p. 439 | DOI:10.1007/s00205-015-0844-3
- Multi-Vortex Solutions to Ginzburg–Landau Equations with External Potential, Archive for Rational Mechanics and Analysis, Volume 204 (2012) no. 1, p. 313 | DOI:10.1007/s00205-011-0478-z
- LOCAL MINIMIZERS WITH VORTEX PINNING FOR A GINZBURG–LANDAU FUNCTIONAL FOR SUPERCONDUCTING HOLLOW SPHERES, Communications in Contemporary Mathematics, Volume 14 (2012) no. 01, p. 1250004 | DOI:10.1142/s0219199712500046
- THE GINZBURG–LANDAU FUNCTIONAL WITH A DISCONTINUOUS AND RAPIDLY OSCILLATING PINNING TERM. PART I: THE ZERO DEGREE CASE, Communications in Contemporary Mathematics, Volume 13 (2011) no. 05, p. 885 | DOI:10.1142/s021919971100449x
- Ginzburg-Landau model with small pinning domains, Networks Heterogeneous Media, Volume 6 (2011) no. 4, p. 715 | DOI:10.3934/nhm.2011.6.715
- Magnetic vortices for a Ginzburg-Landau type energy with discontinuous constraint, ESAIM: Control, Optimisation and Calculus of Variations, Volume 16 (2010) no. 3, p. 545 | DOI:10.1051/cocv/2009009
- Effective dynamics of multi-vortices in an external potential for the Ginzburg–Landau gradient flow, Nonlinearity, Volume 23 (2010) no. 1, p. 179 | DOI:10.1088/0951-7715/23/1/010
- Gauge Uniqueness of Solutions to the Ginzburg–Landau System for Small Superconducting Domains, SIAM Journal on Mathematical Analysis, Volume 42 (2010) no. 1, p. 163 | DOI:10.1137/080745146
- Dynamic Stability and Instability of Pinned Fundamental Vortices, Journal of Nonlinear Science, Volume 19 (2009) no. 4, p. 341 | DOI:10.1007/s00332-009-9039-0
- Local minimizers with vortex pinning to Ginzburg–Landau functional in three dimensions, Journal of Mathematical Analysis and Applications, Volume 345 (2008) no. 1, p. 535 | DOI:10.1016/j.jmaa.2008.04.036
- Vortices and pinning effects for the Ginzburg-Landau model in multiply connected domains, Communications on Pure and Applied Mathematics, Volume 59 (2006) no. 1, p. 36 | DOI:10.1002/cpa.20086
- Giant Vortex and the Breakdown of Strong Pinning in a Rotating Bose-Einstein Condensate, Archive for Rational Mechanics and Analysis, Volume 178 (2005) no. 2, p. 247 | DOI:10.1007/s00205-005-0373-6
- Pinning effects and their breakdown for a Ginzburg–Landau model with normal inclusions, Journal of Mathematical Physics, Volume 46 (2005) no. 9 | DOI:10.1063/1.2010354
- Asymptotics for Selfdual Vortices on the Torus and on the Plane: A Gluing Technique, SIAM Journal on Mathematical Analysis, Volume 37 (2005) no. 1, p. 1 | DOI:10.1137/040619843
Cité par 18 documents. Sources : Crossref