We prove the existence of a positive solution to the BVP
Mots-clés : second order singular differential equation, variational methods, mountain pass theorem
@article{COCV_2009__15_3_499_0, author = {Gomes, Jos\'e Maria}, title = {Existence and $L_\infty $ estimates of some mountain-pass type solutions}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {499--508}, publisher = {EDP-Sciences}, volume = {15}, number = {3}, year = {2009}, doi = {10.1051/cocv/2009015}, mrnumber = {2542569}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2009015/} }
TY - JOUR AU - Gomes, José Maria TI - Existence and $L_\infty $ estimates of some mountain-pass type solutions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2009 SP - 499 EP - 508 VL - 15 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2009015/ DO - 10.1051/cocv/2009015 LA - en ID - COCV_2009__15_3_499_0 ER -
%0 Journal Article %A Gomes, José Maria %T Existence and $L_\infty $ estimates of some mountain-pass type solutions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2009 %P 499-508 %V 15 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2009015/ %R 10.1051/cocv/2009015 %G en %F COCV_2009__15_3_499_0
Gomes, José Maria. Existence and $L_\infty $ estimates of some mountain-pass type solutions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 15 (2009) no. 3, pp. 499-508. doi : 10.1051/cocv/2009015. http://archive.numdam.org/articles/10.1051/cocv/2009015/
[1] An ODE approach to the existence of positive solutions for semilinear problems in . Indiana Univ. Math. J. 30 (1981) 141-157. | MR | Zbl
, and ,[2] Positive solutions for a class of nonlinear singular boundary value problems at resonance. J. Math. Anal. Appl. 184 (1994) 263-284. | MR | Zbl
and ,[3] Multiple positive solutions of a superlinear elliptic problem with sign-changing weight. J. Diff. Eq. 214 (2005) 36-64. | MR
, and ,[4] Two-point boundary value problems: lower and upper solutions, Mathematics in Science Engineering 205. Elsevier (2006). | MR
and ,[5] Multi-peak solutions for some singular perturbation problems. Calc. Var. Partial Differential Equations 10 (2000) 119-134. | MR | Zbl
, and ,[6] Existence and estimates for a class of singular ordinary differential equations. Bull. Austral. Math. Soc. 70 (2004) 429-440. | MR | Zbl
,[7] Existence of bounded trajectories via lower and upper solutions. Discrete Contin. Dynam. Systems 6 (2000) 575-590. | MR | Zbl
and ,[8] Solvability of some two point boundary value problems of Dirichlet, Neumann, or periodic type. Dynam. Systems Appl. 2 (1993) 163-182. | MR | Zbl
,[9] Nonresonance and existence for singular boundary value problems. Nonlinear Anal. 23 (1994) 165-186. | MR | Zbl
,[10] Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics 65. American Mathematical Society, Providence, USA (1986). | MR | Zbl
,Cité par Sources :