We consider the following classical autonomous variational problem
Mots clés : nonconvex variational problems, autonomous variational problems, existence of minimizers, Dubois-Reymond necessary condition, relaxation
@article{COCV_2011__17_1_222_0, author = {Cupini, Giovanni and Marcelli, Cristina}, title = {Monotonicity properties of minimizers and relaxation for autonomous variational problems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {222--242}, publisher = {EDP-Sciences}, volume = {17}, number = {1}, year = {2011}, doi = {10.1051/cocv/2010001}, mrnumber = {2775194}, zbl = {1213.49028}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2010001/} }
TY - JOUR AU - Cupini, Giovanni AU - Marcelli, Cristina TI - Monotonicity properties of minimizers and relaxation for autonomous variational problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 222 EP - 242 VL - 17 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2010001/ DO - 10.1051/cocv/2010001 LA - en ID - COCV_2011__17_1_222_0 ER -
%0 Journal Article %A Cupini, Giovanni %A Marcelli, Cristina %T Monotonicity properties of minimizers and relaxation for autonomous variational problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 222-242 %V 17 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2010001/ %R 10.1051/cocv/2010001 %G en %F COCV_2011__17_1_222_0
Cupini, Giovanni; Marcelli, Cristina. Monotonicity properties of minimizers and relaxation for autonomous variational problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 1, pp. 222-242. doi : 10.1051/cocv/2010001. http://archive.numdam.org/articles/10.1051/cocv/2010001/
[1] Lipschitz regularity for minimizers of integral functionals with highly discontinuous integrands. J. Math. Anal. Appl. 142 (1989) 301-316. | MR | Zbl
, and ,[2] Measure Theory, Volume I. Springer-Verlag, Berlin, Germany (2007). | MR | Zbl
,[3] Existence of solutions for a variational problem associated to models in optimal foraging theory. J. Math. Anal. Appl. 147 (1990) 263-276. | MR | Zbl
and ,[4] Existence and nonexistence results for noncoercive variational problems and applications in ecology. J. Differ. Equ. 85 (1990) 214-235. | MR | Zbl
and ,[5] A general approach to the existence of minimizers of one-dimensional noncoercive integrals of the calculus of variations. Ann. Inst. Henri Poincaré, Anal. non linéaire 8 (1991) 197-223. | Numdam | MR | Zbl
and ,[6] Existence of minimizers for nonconvex, noncoercive simple integrals. SIAM J. Control Optim. 41 (2002) 1118-1140. | MR | Zbl
and ,[7] The classical problem of the calculus of variations in the autonomous case: relaxation and lipschitzianity of solutions. Trans. Amer. Math. Soc. 356 (2004) 415-426. | MR | Zbl
,[8] Existence of Lipschitzian solutions to the classical problem of the calculus of variations in the autonomous case. Ann. Inst. Henri Poincaré, Anal. non linéaire 20 (2003) 911-919. | Numdam | MR | Zbl
and ,[9] On the minimum problem for a class of non-coercive functionals. J. Differ. Equ. 127 (1996) 225-262. | MR | Zbl
, and ,[10] Optimization: theory and applications. Springer-Verlag, New York, USA (1983). | MR | Zbl
,[11] An indirect method in the calculus of variations. Trans. Amer. Math. Soc. 336 (1993) 655-673. | MR | Zbl
,[12] Necessary conditions and non-existence results for autonomous nonconvex variational problems. J. Differ. Equ. 243 (2007) 329-348. | MR | Zbl
, and ,[13] Direct methods in the Calculus of Variations, Applied Mathematical Sciences 78. Second edition, Springer, Berlin, Germany (2008). | MR | Zbl
,[14] Autonomous integral functionals with discontinuous nonconvex integrands: Lipschitz regularity of minimizers, DuBois-Reymond necessary conditions, and Hamilton-Jacobi equations. Appl Math Optim. 48 (2003) 39-66. | MR | Zbl
and ,[15] On the lower semicontinuity of certain integral functionals. Atti Accad. Naz. Lincei, VIII. Ser. 74 (1983) 274-282. | EuDML | MR | Zbl
, and ,[16] Convex analysis and variational problems, Studies in Mathematics and its Applications 1. North Holland, Amsterdam, The Netherlands (1976). | MR | Zbl
and ,[17] Existence of minimizers for some nonconvex one-dimensional integrals. Port. Math. 55 (1998) 167-185. | EuDML | MR | Zbl
, and ,[18] Linear and Quasilinear Elliptic Equations, Mathematics in Science and Engineering 46. Academic Press, New York-London (1968). | MR | Zbl
and ,[19] Variational problems with nonconvex, noncoercive, highly discontinuous integrands: characterization and existence of minimizers. SIAM J. Control Optim. 40 (2002) 1473-1490. | MR | Zbl
,[20] Necessary and sufficient conditions for optimality of nonconvex, noncoercive autonomous variational problems with constraints. Trans. Amer. Math. Soc. 360 (2008) 5201-5227. | MR | Zbl
,[21] Alcune osservazioni sull'esistenza del minimo di integrali del calcolo delle variazioni senza ipotesi di convessità. Rend. Mat. Appl. 13 (1980) 271-281. | Zbl
,[22] Existence of scalar minimizers for nonconvex simple integrals of sum type. J. Math. Anal. Appl. 221 (1998) 559-573. | MR | Zbl
,[23] Existence and regularity for scalar minimizers of affine nonconvex simple integrals. Nonlinear Anal. 53 (2003) 441-451. | MR | Zbl
,[24] Existence of scalar minimizers for simple convex integrals with autonomous Lagrangian measurable on the state variable. Nonlinear Anal. 67 (2007) 2485-2496. | MR | Zbl
,[25] Existence and uniqueness results for minimization problems with nonconvex functionals. J. Optim. Theory Appl. 82 (1994) 571-592. | MR | Zbl
,Cité par Sources :