This paper studies the strong unique continuation property for the Lamé system of elasticity with variable Lamé coefficients λ, µ in three dimensions, where λ and μ are Lipschitz continuous and V ∈ L∞. The method is based on the Carleman estimate with polynomial weights for the Lamé operator.
Mots clés : Lamé system, Carleman estimate, strong unique continuation
@article{COCV_2011__17_3_761_0, author = {Yu, Hang}, title = {Strong unique continuation for the {Lam\'e} system with {Lipschitz} coefficients in three dimensions}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {761--770}, publisher = {EDP-Sciences}, volume = {17}, number = {3}, year = {2011}, doi = {10.1051/cocv/2010021}, mrnumber = {2826979}, zbl = {1227.35109}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2010021/} }
TY - JOUR AU - Yu, Hang TI - Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 761 EP - 770 VL - 17 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2010021/ DO - 10.1051/cocv/2010021 LA - en ID - COCV_2011__17_3_761_0 ER -
%0 Journal Article %A Yu, Hang %T Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 761-770 %V 17 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2010021/ %R 10.1051/cocv/2010021 %G en %F COCV_2011__17_3_761_0
Yu, Hang. Strong unique continuation for the Lamé system with Lipschitz coefficients in three dimensions. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 3, pp. 761-770. doi : 10.1051/cocv/2010021. http://archive.numdam.org/articles/10.1051/cocv/2010021/
[1] Strong unique continuation for the Lamé system of elasticity. Comm. P. D. E. 26 (2001) 1787-1810. | MR | Zbl
and ,[2] Unique continuation for a stationary isotropic Lamé system with varaiable coefficients. Comm. P. D. E. 23 (1998) 371-385. | MR | Zbl
, , and ,[3] La propriété du prolongement unique pour un système elliptique : le système de Lamé. J. Math. Pures Appl. 72 (1993) 475-492. | MR | Zbl
and ,[4] Carleman estimates for some elliptic systems. J. Phys. Conference Series 124 (2008) 012023.
,[5] Unique continuation for the system of elasticity in the plan. Proc. Amer. Math. Soc. 134 (2005) 2015-2018. | MR | Zbl
,[6] The Calderón problem with partial data. Ann. Math. 165 (2007) 567-591. | MR | Zbl
, and ,[7] Optimal three-ball inequalities and quantitative uniqueness for the Lamé system with Lipschitz coefficients. arXiv:0901.4638 (2009). | MR | Zbl
, and ,[8] Strong unique continuation for the Lamé system with Lipschitz coefficients. Math. Ann. 331 (2005) 611-629. | MR | Zbl
and ,[9] An introduction to semiclassical and microlocal analysis. Springer-Verlag (2002). | MR | Zbl
,[10] Strong uniqueness for second order differential operators J. Differ. Equ. 141 (1997) 201-217. | MR | Zbl
,[11] Carleman estimates and inverse problems for Dirac operators. Math. Ann. 344 (2009) 161-184. | MR | Zbl
and ,[12] Außnraumaufgaben in der Theorie stationärer Schwingungen inhomogener elasticher Körper. Math. Z. 111 (1969) 387-398. | MR | Zbl
,[13] Unique continuation for systems with Lamé principal part. Math. Methods Appl. Sci. 24 (2001) 595-605. | MR | Zbl
,[14] Three spheres inequalities and unique continuation for a three-dimensional Lamé system of elasticity with C1 coeffients. arXiv:0811.1262 (2008).
,Cité par Sources :