The aim of this paper is to provide a rigorous variational formulation for the detection of points in 2-d biological images. To this purpose we introduce a new functional whose minimizers give the points we want to detect. Then we define an approximating sequence of functionals for which we prove the Γ-convergence to the initial one.
Mots clés : points detection, biological images, divergence-measure fields, p-capacity, Γ-convergence
@article{COCV_2011__17_4_909_0, author = {Aubert, Gilles and Graziani, Daniele}, title = {Variational approximation for detecting point-like target problems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {909--930}, publisher = {EDP-Sciences}, volume = {17}, number = {4}, year = {2011}, doi = {10.1051/cocv/2010029}, mrnumber = {2859858}, zbl = {1238.49024}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2010029/} }
TY - JOUR AU - Aubert, Gilles AU - Graziani, Daniele TI - Variational approximation for detecting point-like target problems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2011 SP - 909 EP - 930 VL - 17 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2010029/ DO - 10.1051/cocv/2010029 LA - en ID - COCV_2011__17_4_909_0 ER -
%0 Journal Article %A Aubert, Gilles %A Graziani, Daniele %T Variational approximation for detecting point-like target problems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2011 %P 909-930 %V 17 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2010029/ %R 10.1051/cocv/2010029 %G en %F COCV_2011__17_4_909_0
Aubert, Gilles; Graziani, Daniele. Variational approximation for detecting point-like target problems. ESAIM: Control, Optimisation and Calculus of Variations, Tome 17 (2011) no. 4, pp. 909-930. doi : 10.1051/cocv/2010029. http://archive.numdam.org/articles/10.1051/cocv/2010029/
[1] Functions of bounded variation and free discontinuity problems. Oxford University Press, Oxford (2000). | MR | Zbl
, and ,[2] Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 135 (1983) 293-318. | MR | Zbl
,[3] Detecting codimension - Two objects in an image with Ginzburg-Landau models. Int. J. Comput. Vis. 65 (2005) 29-42. | Zbl
, and ,[4] Variational approximation of functionals with curvatures and related properties. J. Conv. Anal. 4 (1997) 91-108. | MR | Zbl
,[5] Approssimazione variazionale di funzionali con curvatura. Seminario di Analisi Matematica, Dipartimento di Matematica dell'Università di Bologna (1993).
and ,[6] Ginzburg-Landau Vortices. Birkäuser, Boston (1994). | MR | Zbl
, and ,[7] Γ-convergence for beginners. Oxford University Press, New York (2000). | MR | Zbl
,[8] Curvature theory of boundary phases: the two dimensional case. Interfaces Free Bound. 4 (2002) 345-370. | MR | Zbl
and ,[9] Approximation by Γ-convergence of a curvature-depending functional in Visual Reconstruction. Comm. Pure Appl. Math. 59 (2006) 71-121. | MR | Zbl
and ,[10] Continuity of Neumann linear elliptic problems on varying two-dimensionals bounded open sets. Comm. Partial Diff. Eq. 22 (1997) 811-840. | MR | Zbl
and ,[11] Divergence-measure fields and conservation laws. Arch. Rational Mech. Anal. 147 (1999) 35-51. | Zbl
and ,[12] On the theory of divergence-measure fields and its applications. Bol. Soc. Bras. Math. 32 (2001) 1-33. | MR | Zbl
and ,[13] Introduction to Γ-convergence. Birkhäuser, Boston (1993). | MR | Zbl
,[14] Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999) 741-808. | Numdam | MR | Zbl
, , and ,[15] Some remarks on Γ-convergence and least square methods, in Composite Media and Homogenization Theory, G. Dal Maso and G.F. Dell'Antonio Eds., Birkhäuser, Boston (1991) 135-142. | Zbl
,[16] Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. Natur. 58 (1975) 842-850. | MR | Zbl
and ,[17] Su un tipo di convergenza variazionale. Rend. Sem. Mat. Brescia 3 (1979) 63-101. | Zbl
and ,[18] Measure Theory and Fine Properties of Functions. CRC Press (1992). | MR | Zbl
and ,[19] A formal Γ-convergence approach for the detection of points in 2-D images. SIAM J. Imaging Sci. (to appear). | MR | Zbl
, and ,[20] Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford (1993). | MR | Zbl
, and ,[21] The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal. 98 (1987) 123-142. | MR | Zbl
,[22] Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. 14-B (1977) 285-299. | MR | Zbl
and ,[23] On a modified conjecture of De Giorgi. Math. Zeitschrift 254 (2006) 675-714. | MR | Zbl
and ,[24] Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 180-258. | Numdam | MR | Zbl
,[25] Weakly Differentiable Functions. Springer-Verlag, New York (1989). | MR | Zbl
,Cité par Sources :