A control system is said to be finite if the Lie algebra generated by its vector fields is finite dimensional. Sufficient conditions for such a system on a compact manifold to be controllable are stated in terms of its Lie algebra. The proofs make use of the equivalence theorem of [Ph. Jouan, ESAIM: COCV 16 (2010) 956-973]. and of the existence of an invariant measure on certain compact homogeneous spaces.
Keywords: compact homogeneous spaces, linear systems, controllability, finite dimensional Lie algebras, Haar measure
@article{COCV_2012__18_3_643_0, author = {Jouan, Philippe}, title = {Invariant measures and controllability of finite systems on compact manifolds}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {643--655}, publisher = {EDP-Sciences}, volume = {18}, number = {3}, year = {2012}, doi = {10.1051/cocv/2011165}, mrnumber = {3041659}, zbl = {1281.93020}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2011165/} }
TY - JOUR AU - Jouan, Philippe TI - Invariant measures and controllability of finite systems on compact manifolds JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2012 SP - 643 EP - 655 VL - 18 IS - 3 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2011165/ DO - 10.1051/cocv/2011165 LA - en ID - COCV_2012__18_3_643_0 ER -
%0 Journal Article %A Jouan, Philippe %T Invariant measures and controllability of finite systems on compact manifolds %J ESAIM: Control, Optimisation and Calculus of Variations %D 2012 %P 643-655 %V 18 %N 3 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2011165/ %R 10.1051/cocv/2011165 %G en %F COCV_2012__18_3_643_0
Jouan, Philippe. Invariant measures and controllability of finite systems on compact manifolds. ESAIM: Control, Optimisation and Calculus of Variations, Volume 18 (2012) no. 3, pp. 643-655. doi : 10.1051/cocv/2011165. http://archive.numdam.org/articles/10.1051/cocv/2011165/
[1] Basic Lie Theory. World Scientific (1997). | Zbl
and ,[2] Géométrie différentielle : variétés, courbes et surfaces. Presses universitaires de France (1987). | MR | Zbl
and ,[3] Compact Clifford-Klein forms of symmetric spaces. Topology 2 (1963) 111-122. | MR | Zbl
,[4] Local controllability for linear control systems on Lie groups. J. Dyn. Control Syst. 11 (2005) 353-373. | MR | Zbl
and ,[5] Structure des systèmes non linéaires. Éditions du CNRS, Paris (1984). | MR | Zbl
,[6] Differential Geometry and Symmetric Spaces. Academic Press (1962). | MR | Zbl
,[7] Equivalence of control systems with linear systems on Lie groups and homogeneous spaces. ESAIM : COCV 16 (2010) 956-973. | Numdam | MR | Zbl
,[8] Finite time and exact time controllability on compact manifolds. J. Math. Sci. (to appear). | MR | Zbl
,[9] Geometric control theory. Cambridge University Press (1997). | MR | Zbl
,[10] Control systems on Lie groups. J. Differ. Equ. 12 (1972) 313-329. | MR | Zbl
and ,[11] Controllability of nonlinear systems on compact manifolds. SIAM J. Control. 12 (1974) 1-4. | MR | Zbl
,[12] Homogeneous spaces with finite invariant measure. Ann. Math. 75 (1962) 17-37. | MR | Zbl
,[13] Qualitative Theory of Differential Equations. Princeton Uniersity Press (1960). | MR | Zbl
and ,[14] Controllability of invariant systems on Lie groups and homogeneous spaces. J. Math. Sci. 100 (2000) 2355-2427. | MR | Zbl
,[15] Controllability properties of a class of control systems on Lie groups, Nonlinear control in the year 2000 1, Paris, Lecture Notes in Control and Inform. Sci. 258. Springer (2001) 83-92. | MR | Zbl
and ,Cited by Sources: