Note on the internal stabilization of stochastic parabolic equations with linearly multiplicative gaussian noise
ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 4, pp. 1055-1063.

The parabolic equations driven by linearly multiplicative Gaussian noise are stabilizable in probability by linear feedback controllers with support in a suitably chosen open subset of the domain. This procedure extends to Navier - Stokes equations with multiplicative noise. The exact controllability is also discussed.

DOI : 10.1051/cocv/2012044
Classification : 35Q30, 60H15, 35B40
Mots-clés : stochastic equation, brownian motion, Navier − Stokes equation, feedback controller
@article{COCV_2013__19_4_1055_0,
     author = {Barbu, Viorel},
     title = {Note on the internal stabilization of stochastic parabolic equations with linearly multiplicative gaussian noise},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1055--1063},
     publisher = {EDP-Sciences},
     volume = {19},
     number = {4},
     year = {2013},
     doi = {10.1051/cocv/2012044},
     mrnumber = {3182680},
     zbl = {1283.35062},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2012044/}
}
TY  - JOUR
AU  - Barbu, Viorel
TI  - Note on the internal stabilization of stochastic parabolic equations with linearly multiplicative gaussian noise
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2013
SP  - 1055
EP  - 1063
VL  - 19
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2012044/
DO  - 10.1051/cocv/2012044
LA  - en
ID  - COCV_2013__19_4_1055_0
ER  - 
%0 Journal Article
%A Barbu, Viorel
%T Note on the internal stabilization of stochastic parabolic equations with linearly multiplicative gaussian noise
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2013
%P 1055-1063
%V 19
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2012044/
%R 10.1051/cocv/2012044
%G en
%F COCV_2013__19_4_1055_0
Barbu, Viorel. Note on the internal stabilization of stochastic parabolic equations with linearly multiplicative gaussian noise. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 4, pp. 1055-1063. doi : 10.1051/cocv/2012044. http://archive.numdam.org/articles/10.1051/cocv/2012044/

[1] S. Aniţa, Internal stabilization of diffusion equation. Nonlinear Stud. 8 (2001) 193-202.

[2] V. Barbu, Controllability of parabolic and Navier − Stokes equations. Sci. Math. Japon. 56 (2002) 143-211. | MR

[3] V. Barbu, Stabilization of Navier − Stokes Flows, Communication and Control Engineering. Springer, London (2011). | MR

[4] V. Barbu and C. Lefter, Internal stabilizability of the Navier-Stokes equations. Syst. Control Lett. 48 (2003) 161-167. | MR

[5] V. Barbu, A. Rascanu and G. Tessitore, Carleman estimates and controllability of linear stochastic heat equations. Appl. Math. Optimiz. 47 (2003) 1197-1209. | MR

[6] V. Barbu, S.S. Rodriguez and A. Shirikyan, Internal exponential stabilization to a nonstationary solution for 3 − D Navier − Stokes equations. SIAM J. Control Optim. 49 (2011) 1454-1478. | MR

[7] V. Barbu and R. Triggiani, Internal stabilization of Navier-Stokes equations with finite-dimensional controllers. Indiana Univ. Math. J. 53 (2004) 1443-1494. | MR

[8] G. Da Prato and J. Zabczyk, Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge (1996). | MR

[9] Qi, Lü, Some results on the controllability of forward stochastic heat equations with control on the drift. J. Funct. Anal. 260 (2011) 832-851. | MR

[10] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (2008). | MR

[11] D. Goreac, Approximate controllability for linear stochastic differential equations in infinite dimensions. Appl. Math. Optim. 53 (2009) 105-132. | MR

[12] O. Imanuvilov, On exact controllability of the Navier-Stokes equations. ESAIM: COCV 3 (1998) 97-131. | Numdam | MR

[13] R.S. Lipster and A. Shiryaev, Theory of Martingales. Kluwer Academic, Dordrecht (1989). | MR

[14] S. Tang and X. Zhang, Null controllability for forward and backward stochastic parabolic equations. SIAM J. Control Optim. 48 (2009) 2191-2216. | MR

Cité par Sources :