In this paper we study the null-controllability of an artificial advection-diffusion system in dimension n. Using a spectral method, we prove that the control cost goes to zero exponentially when the viscosity vanishes and the control time is large enough. On the other hand, we prove that the control cost tends to infinity exponentially when the viscosity vanishes and the control time is small enough.
Mots-clés : vanishing viscosity, controllability, heat equation, Carleman
@article{COCV_2013__19_4_1209_0, author = {Cornilleau, Pierre and Guerrero, Sergio}, title = {On the cost of null-control of an artificial advection-diffusion problem}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {1209--1224}, publisher = {EDP-Sciences}, volume = {19}, number = {4}, year = {2013}, doi = {10.1051/cocv/2013048}, mrnumber = {3182686}, zbl = {1293.35021}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2013048/} }
TY - JOUR AU - Cornilleau, Pierre AU - Guerrero, Sergio TI - On the cost of null-control of an artificial advection-diffusion problem JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2013 SP - 1209 EP - 1224 VL - 19 IS - 4 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2013048/ DO - 10.1051/cocv/2013048 LA - en ID - COCV_2013__19_4_1209_0 ER -
%0 Journal Article %A Cornilleau, Pierre %A Guerrero, Sergio %T On the cost of null-control of an artificial advection-diffusion problem %J ESAIM: Control, Optimisation and Calculus of Variations %D 2013 %P 1209-1224 %V 19 %N 4 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2013048/ %R 10.1051/cocv/2013048 %G en %F COCV_2013__19_4_1209_0
Cornilleau, Pierre; Guerrero, Sergio. On the cost of null-control of an artificial advection-diffusion problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 4, pp. 1209-1224. doi : 10.1051/cocv/2013048. http://archive.numdam.org/articles/10.1051/cocv/2013048/
[1] Singular optimal control: a linear 1-D parabolic-hyperbolic example. Asymptot. Anal. 44 (2005) 237-257. | MR
and ,[2] Controllability and observability of an artificial advection-diffusion problem. Math. Control Signals Syst. 24 (2012) 265-294 | MR
and ,[3] Poches de tourbillon visqueuses. J. Math. Pures Appl. 76 (1997) 609-647. | MR
,[4] A general theory of observation and control. SIAM J. Control Optim. 15 (1977) 185-220. | MR
and ,[5] One-parameter semigroups for linear evolution equations. Graduate texts in mathematics. Springer-Verlag (2000). | MR
and ,[6] Controllability of evolution equations. In Lect. Notes Ser. vol. 34. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). | MR
and ,[7] A complex-analytic approach to the problem of uniform controllability of a transport equation in the vanishing viscosity limit. J. Funct. Anal. 258 (2010) 852-868. | MR
,[8] Uniform controllability of a transport equation in zero diffusion-dispersion limit. M3AS 19 (2009) 1567-1601. | MR
and ,[9] Elliptic problems in nonsmooth domains. Pitman, London (1985). | MR
,[10] Singular optimal control for a transport-diffusion equation. Commun. Partial Differ. Equ. 32 (2007) 1813-1836. | MR | Zbl
and ,[11] Artificial boundary for the linear advection diffusion equation. Math. Comput. 46 (1986) 425-438. | MR | Zbl
,[12] On the null-controllability of the heat equation in unbounded domains. Bull. Sci. Math. 129 (2005) 175-185. | MR | Zbl
,Cité par Sources :