This article aims at studying the controllability of a simplified fluid structure interaction model derived and developed in [C. Conca, J. Planchard and M. Vanninathan, RAM: Res. Appl. Math. John Wiley & Sons Ltd., Chichester (1995); J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11 (2005) 180-203; M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547-552]. This interaction is modeled by a wave equation surrounding a harmonic oscillator. Our main result states that, in the radially symmetric case, this system can be controlled from the outer boundary. This improves previous results [J.-P. Raymond and M. Vanninathan, ESAIM: COCV 11 (2005) 180-203; M. Tucsnak and M. Vanninathan, Systems Control Lett. 58 (2009) 547-552]. Our proof is based on a spherical harmonic decomposition of the solution and the so-called lateral propagation of the energy for 1d waves.
Mots clés : controllability, observability, fluid-structure interaction
@article{COCV_2014__20_2_547_0, author = {Ervedoza, S. and Vanninathan, M.}, title = {Controllability of a simplified model of fluid-structure interaction}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {547--575}, publisher = {EDP-Sciences}, volume = {20}, number = {2}, year = {2014}, doi = {10.1051/cocv/2013075}, mrnumber = {3264216}, zbl = {1285.93019}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2013075/} }
TY - JOUR AU - Ervedoza, S. AU - Vanninathan, M. TI - Controllability of a simplified model of fluid-structure interaction JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2014 SP - 547 EP - 575 VL - 20 IS - 2 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2013075/ DO - 10.1051/cocv/2013075 LA - en ID - COCV_2014__20_2_547_0 ER -
%0 Journal Article %A Ervedoza, S. %A Vanninathan, M. %T Controllability of a simplified model of fluid-structure interaction %J ESAIM: Control, Optimisation and Calculus of Variations %D 2014 %P 547-575 %V 20 %N 2 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2013075/ %R 10.1051/cocv/2013075 %G en %F COCV_2014__20_2_547_0
Ervedoza, S.; Vanninathan, M. Controllability of a simplified model of fluid-structure interaction. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 547-575. doi : 10.1051/cocv/2013075. http://archive.numdam.org/articles/10.1051/cocv/2013075/
[1] Un exemple d'utilisation des notions de propagation pour le contrôle et la stabilisation de problèmes hyperboliques. Nonlinear hyperbolic equations in applied sciences. Rend. Sem. Mat. Univ. Politec. Torino, (Special Issue) 1988 (1989) 11-31. | MR | Zbl
, and ,[2] Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024-1065. | MR | Zbl
, and ,[3] Mesures semi-classiques et mesures de défaut. Séminaire Bourbaki, Vol. 1996/97. Astérisque, (245): Exp. No. 826 (1997) 167-195. | Numdam | MR | Zbl
,[4] Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 749-752. | MR | Zbl
and ,[5] Geometric control in the presence of a black box. J. Amer. Math. Soc. 17 (2004) 443-471. | MR | Zbl
and ,[6] Fluids and periodic structures, vol. 38 of RAM: Res. Appl. Math. John Wiley & Sons Ltd., Chichester (1995). | MR | Zbl
, and ,[7] Analysis of the HUM control operator and exact controllability for semilinear waves in uniform time. SIAM J. Control Optim. 48 (2009) 521-550. | MR | Zbl
and ,[8] Spectral conditions for admissibility and observability of wave systems: applications to finite element schemes. Numer. Math. 113 (2009) 377-415. | MR | Zbl
,[9] A systematic method for building smooth controls for smooth data. Discrete Contin. Dyn. Syst. Ser. B 14 (2010) 1375-1401. | MR | Zbl
and .[10] The wave equation: Control and numerics. Control Partial Differ. Eqs. Lect. Notes Math., CIME Subseries. edited by P.M. Cannarsa and J.M. Coron. Springer Verlag (2011). | MR
and ,[11] Microlocal defect measures. Commun. Partial Differ. Eqs. 16 (1991) 1761-1794. | MR | Zbl
,[12] The analysis of linear partial differential operators. I, Distribution theory and Fourier analysis. Vol. 256 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2nd edn. (1990). | MR | Zbl
,[13] Contrôlabilité exacte, Stabilisation et Perturbations de Systèmes Distribués. Tome 1. Contrôlabilité exacte, vol. 8 RMA. Masson (1988). | MR | Zbl
,[14] Exact controllability, stabilization and perturbations for distributed systems. SIAM Review 30 (1988) 1-68. | MR | Zbl
,[15] Singularities of boundary value problems. II. Commun. Pure Appl. Math. 35 (1982) 129-168. | MR | Zbl
and ,[16] Controllability cost of conservative systems: resolvent condition and transmutation. J. Funct. Anal. 218 (2005) 425-444. | MR | Zbl
,[17] Solutions of the wave equation with localized energy. Commun. Pure Appl. Math. 22 (1969) 807-823. | MR | Zbl
,[18] Exact controllability in fluid-solid structure: the Helmholtz model. ESAIM: COCV 11 (2005) 180-203. | Numdam | MR | Zbl
and ,[19] Null controllability in a fluid-solid structure model. J. Differ. Eqs. 248 (2010) 1826-1865. | MR | Zbl
and ,[20] Locally distributed control for a model of fluid-structure interaction. Systems Control Lett. 58 (2009) 547-552. | MR | Zbl
and ,[21] Observation and Control for Operator Semigroups, vol. XI of Birkäuser Advanced Texts. Springer (2009). | MR | Zbl
and ,[22] Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. Henri Poincaré Anal. Non Linéaire 10 (1993) 109-129. | Numdam | MR | Zbl
,Cité par Sources :