Multi-phase structural optimization via a level set method
ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 2, pp. 576-611.

We consider the optimal distribution of several elastic materials in a fixed working domain. In order to optimize both the geometry and topology of the mixture we rely on the level set method for the description of the interfaces between the different phases. We discuss various approaches, based on Hadamard method of boundary variations, for computing shape derivatives which are the key ingredients for a steepest descent algorithm. The shape gradient obtained for a sharp interface involves jump of discontinuous quantities at the interface which are difficult to numerically evaluate. Therefore we suggest an alternative smoothed interface approach which yields more convenient shape derivatives. We rely on the signed distance function and we enforce a fixed width of the transition layer around the interface (a crucial property in order to avoid increasing “grey” regions of fictitious materials). It turns out that the optimization of a diffuse interface has its own interest in material science, for example to optimize functionally graded materials. Several 2-d examples of compliance minimization are numerically tested which allow us to compare the shape derivatives obtained in the sharp or smoothed interface cases.

DOI: 10.1051/cocv/2013076
Classification: 49Q10, 74P15, 74P20, 49J50
Keywords: shape and topology optimization, multi-materials, signed distance function
@article{COCV_2014__20_2_576_0,
     author = {Allaire, G. and Dapogny, C. and Delgado, G. and Michailidis, G.},
     title = {Multi-phase structural optimization \protect\emph{via }a level set method},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {576--611},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {2},
     year = {2014},
     doi = {10.1051/cocv/2013076},
     zbl = {1287.49045},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2013076/}
}
TY  - JOUR
AU  - Allaire, G.
AU  - Dapogny, C.
AU  - Delgado, G.
AU  - Michailidis, G.
TI  - Multi-phase structural optimization via a level set method
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 576
EP  - 611
VL  - 20
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2013076/
DO  - 10.1051/cocv/2013076
LA  - en
ID  - COCV_2014__20_2_576_0
ER  - 
%0 Journal Article
%A Allaire, G.
%A Dapogny, C.
%A Delgado, G.
%A Michailidis, G.
%T Multi-phase structural optimization via a level set method
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 576-611
%V 20
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2013076/
%R 10.1051/cocv/2013076
%G en
%F COCV_2014__20_2_576_0
Allaire, G.; Dapogny, C.; Delgado, G.; Michailidis, G. Multi-phase structural optimization via a level set method. ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 2, pp. 576-611. doi : 10.1051/cocv/2013076. http://archive.numdam.org/articles/10.1051/cocv/2013076/

[1] G. Allaire, Shape optimization by the homogenization method. Springer Verlag, New York (2001). | MR | Zbl

[2] G. Allaire, Conception optimale de structures, vol. 58 of Mathématiques et Applications. Springer, Heidelberg (2006). | MR | Zbl

[3] G. Allaire and C. Castro, A new approach for the optimal distribution of assemblies in a nuclear reactor. Numerische Mathematik 89 (2001) 1-29. | MR | Zbl

[4] G. Allaire, F. Jouve and A.M. Toader, Structural optimization using shape sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363-393. | MR | Zbl

[5] G. Allaire, F. Jouve and N. Van Goethem, Damage evolution in brittle materials by shape and topological sensitivity analysis. J. Comput. Phys. 230 (2011) 5010-5044. | MR

[6] G. Allaire and S. Gutierrez, Optimal Design in Small Amplitude Homogenization. ESAIM: M2AN 41 (2007) 543-574. | Numdam | MR | Zbl

[7] L. Ambrosio, Lecture notes on geometric evolution problems, distance function and viscosity solutions, in Calculus of Variations and Partial Differential Equations, edited by G. Buttazo, A. Marino and M.K.V. Murthy. Springer (1999) 5-93. | Zbl

[8] L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. 1 (1993) 55-69. | MR | Zbl

[9] M. Bendsoe and O. Sigmund, Topology Optimization. Theory, Methods, and Applications. Springer Verlag, New York (2003). | MR | Zbl

[10] Ch. Bernardi and O. Pironneau, Sensitivity of Darcy's law to discontinuities. Chinese Ann. Math. Ser. B 24 (2003) 205-214. | MR | Zbl

[11] H.-J. Butt, K. Graf and M. Kappl, Physics and Chemistry of Interfaces. Wiley (2003).

[12] P. Cannarsa and P. Cardaliaguet, Representation of equilibrium solutions to the table problem for growing sandpiles. J. Eur. Math. Soc. 6 (2004) 1-30. | MR | Zbl

[13] J. Céa, Conception optimale ou identification de formes, calcul rapide de la dérivée directionnelle de la fonction coût. Math. Model. Numer. 20 (1986) 371-420. | Numdam | MR | Zbl

[14] A. Chambolle, A density result in two-dimensional linearized elasticity and applications. Arch. Ration. Mech. Anal. 167 (2003) 211-233. | MR | Zbl

[15] I. Chavel, Riemannian Geometry, a modern introduction, 2nd Edn. Cambridge University Press (2006). | MR | Zbl

[16] D. Chenais, On the existence of a solution in a domain identification problem. J. Math. Anal. Appl. 52 (1975) 189-289. | MR | Zbl

[17] A. Cherkaev, Variational Methods for Structural Optimization. Springer, New York (2000). | MR | Zbl

[18] C. Dapogny, Ph.D. thesis, Université Pierre et Marie Curie. In preparation.

[19] F. De Gournay, Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J. Control Optim. 45 (2006) 343-367. | MR | Zbl

[20] G. Delgado, Ph.D. thesis, Ecole Polytechnique. In preparation.

[21] M.C. Delfour and J.-P. Zolesio, Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, 2nd edition. SIAM, Philadelphia (2011). | MR | Zbl

[22] M.C. Delfour and J.-P. Zolesio, Shape identification via metrics constructed from the oriented distance function. Control and Cybernetics 34 (2005) 137-164. | MR | Zbl

[23] L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press (1992). | MR | Zbl

[24] H. Federer, Curvature Measures. Trans. Amer. Math. Soc. 93 (1959) 418-491. | MR | Zbl

[25] J. Gomes and O. Faugeras, Reconciling distance functions and level sets, Scale-Space Theories in Computer Vision. Springer (1999) 70-81.

[26] J. Haslinger and J. Dvorak, Optimum composite material design. RAIRO M2AN 29 (1995) 657-686. | Numdam | MR | Zbl

[27] A. Henrot and M. Pierre, Variation et optimisation de formes, une analyse géométrique, vol. 48 of Mathématiques et Applications. Springer, Heidelberg (2005). | MR | Zbl

[28] F. Hettlich and W. Rundell, The determination of a discontinuity in a conductivity from a single boundary measurement. Inverse Problems 14 (1998) 67-82. | MR | Zbl

[29] A.L. Karchevsky, Reconstruction of pressure velocities and boundaries of thin layers in thinly-stratified layers. J. Inverse Ill-Posed Probl. 18 (2010) 371-388. | MR | Zbl

[30] R. Lipton, Design of functionally graded composite structures in the presence of stress constraints. Int. J. Solids Structures 39 (2002) 2575-2586. | MR | Zbl

[31] C. Mantegazza and A.C. Menucci, Hamilton-Jacobi Equations and Distance Functions on Riemannian Manifolds. Appl. Math. Optim. 47 (2002) 1-25. | MR | Zbl

[32] W. Mc Lean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). | MR | Zbl

[33] Y. Mei and X. Wang, A level set method for structural topology optimization with multi-constraints and multi-materials. Acta Mechanica Sinica 20 (2004). | MR | Zbl

[34] Y. Mei and X. Wang, A level set method for structural topology optimization and its applications. Adv. Eng. software 35 (2004) 415-441. | Zbl

[35] G. Milton, The theory of composites. Cambridge University Press (2001). | MR | Zbl

[36] F. Murat and J. Simon, Sur le contrôle par un domaine géométrique. Technical Report RR-76015. Laboratoire d'Analyse Numérique (1976).

[37] J. Nocedal and S.J. Wright, Numerical optimization. Springer Science+ Business Media (2006). | MR | Zbl

[38] ZH.O. Oralbekova, K.T. Iskakov and A.L. Karchevsky, Existence of the residual functional derivative with respect to a coordinate of gap point of medium, to appear in Appl. Comput. Math. | MR

[39] J.M. Ortega and W.C. Rheinboldt, On discretization and differentiation of operators with application to Newton's method. SIAM J. Numer. Anal. 3 (1966) 143-156. | MR | Zbl

[40] S.J. Osher and J.A. Sethian, Front propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 78 (1988) 12-49. | MR | Zbl

[41] O. Pantz, Sensibilité de l'équation de la chaleur aux sauts de conductivité. C. R. Acad. Sci. Paris, Ser. I 341 (2005) 333-337. | MR | Zbl

[42] O. Pironneau, F. Hecht and A. Le Hyaric, FreeFem++ version 2.15-1. Available on http://www.freefem.org/ff++/.

[43] J.A. Sethian, Level-Set Methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision and materials science. Cambridge University Press (1999). | MR | Zbl

[44] O. Sigmund and S. Torquato, Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45 (1997) 1037-1067. | MR

[45] O. Sigmund, Design of multiphysics actuators using topology optimization-part ii: Two-material structures. Comput. Methods Appl. Mech. Eng. 190 (2001) 6605-6627. | Zbl

[46] N. Sukumar, D.L. Chopp, N. Moes and T. Belytschko, Modeling holes and inclusions by level sets in the extended finite element method. Comput. Methods Appl. Mech. Eng. 190 (2001) 6183-6200. | MR | Zbl

[47] S. Suresh, A. Mortensen, Fundamentals of functionally graded materials. London, Institute of Materials (1998).

[48] V. Šverak, On optimal shape design. J. Math. Pures Appl. 72 (1993) 537-551. | MR | Zbl

[49] C.C. Swan, I. Kosaka, Voigt-Reuss topology optimization for structures with linear elastic material behaviors. Int. J. Numer. Methods Eng. 40 (1997). | MR | Zbl

[50] L. Tarta, The general theory of homogenization. A personalized introduction, vol. 7 of Lecture Notes of the Unione Matematica Italiana. Springer-Verlag, Berlin, UMI, Bologna (2009). | MR | Zbl

[51] R. Tilley, Understanding Solids: The Science of Materials. Wiley (2004).

[52] N. Vermaak, G. Michailidis, Y. Brechet, G. Allaire, G. Parry and R. Estevez, Material Interface Effects on the Topology Optimization of Multi-Phase Structures Using A Level Set Method. submitted.

[53] L.A. Vese and T.F. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vision 50 (2002) 271-293. | Zbl

[54] M. Wang, S. Chen, X. Wang and Y. Mei, Design of Multimaterial Compliant Mechanisms Using Level-Set Methods. J. Mech. Des. 127 (2005) 941-956.

[55] M. Wang and X. Wang, Color level sets: a multi-phase method for structural topology optimization with multiple materials. Comput. Methods Appl. Mech. Eng. 193 (2004) 469-496. | MR | Zbl

[56] M. Wang and X. Wang, A level-set based variational method for design and optimization of heterogeneous objetcs. Compututer-Aided Design 37 (2005) 321-337.

[57] L. Yin and G.K. Ananthasuresh, Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme. Struct. Multidiscip. Optim. 23 (2001) 49-62.

[58] S. Zhou and Q. Li, Computational design of multi-phase microstructural materials for extremal conductivity. Comput. Mater. Sci. 43 (2008) 549-564.

[59] S. Zhou and M.Y. Wang, Multimaterial structural optimization with a generalized Cahn-Hilliard model of multiphase transition. Struct. Multidisc. Optim. 33 (2007) 89-111. | MR | Zbl

Cited by Sources: