On indecomposable sets with applications
ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 612-631.

In this note we show the characteristic function of every indecomposable set F in the plane is BV equivalent to the characteristic function a closed set See Formula in PDF \hbox{See Formula in PDF} . We show by example this is false in dimension three and above. As a corollary to this result we show that for every ϵ > 0 a set of finite perimeter S can be approximated by a closed subset See Formula in PDF \hbox{See Formula in PDF} with finitely many indecomposable components and with the property that See Formula in PDF \hbox{See Formula in PDF} and See Formula in PDF \hbox{See Formula in PDF} . We apply this corollary to give a short proof that locally quasiminimizing sets in the plane are BVl extension domains.

DOI : 10.1051/cocv/2013077
Classification : 28A75
Mots-clés : sets of finite perimeter, indecomposable sets
@article{COCV_2014__20_2_612_0,
     author = {Lorent, Andrew},
     title = {On indecomposable sets with applications},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {612--631},
     publisher = {EDP-Sciences},
     volume = {20},
     number = {2},
     year = {2014},
     doi = {10.1051/cocv/2013077},
     mrnumber = {3264218},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2013077/}
}
TY  - JOUR
AU  - Lorent, Andrew
TI  - On indecomposable sets with applications
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2014
SP  - 612
EP  - 631
VL  - 20
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2013077/
DO  - 10.1051/cocv/2013077
LA  - en
ID  - COCV_2014__20_2_612_0
ER  - 
%0 Journal Article
%A Lorent, Andrew
%T On indecomposable sets with applications
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2014
%P 612-631
%V 20
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2013077/
%R 10.1051/cocv/2013077
%G en
%F COCV_2014__20_2_612_0
Lorent, Andrew. On indecomposable sets with applications. ESAIM: Control, Optimisation and Calculus of Variations, Tome 20 (2014) no. 2, pp. 612-631. doi : 10.1051/cocv/2013077. http://archive.numdam.org/articles/10.1051/cocv/2013077/

[1] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000). | MR | Zbl

[2] L. Ambrosio, V. Caselles, S. Masnou and J.-M. Morel, Connected components of sets of finite perimeter and applications to image processing. J. Eur. Math. Soc. (JEMS) 3 (2001) 39-92. | MR | Zbl

[3] A. Baldi and F. Montefalcone, A note on the extension of BV functions in metric measure spaces. J. Math. Anal. Appl. 340 (2008) 197-208. | MR | Zbl

[4] Yu. Burago and V.G. Maz'Ya, Potential theory and function theory for irregular regions. Translated from Russian. Seminars in Mathematics. Vol. 3. of V.A. Steklov Mathematical Institute, Leningrad, Consultants Bureau, New York (1969). | MR | Zbl

[5] G. David and S. Semmes, Quasiminimal surfaces of codimension 1 and John domains. Pacific J. Math. 183 (1998) 213-277. | MR | Zbl

[6] J. Kinnunenm, R. Korte, A. Lorent and N. Shanmugalingam, Regularity of sets with quasiminimal boundary surfaces in metric spaces. J. Geom. Anal. 23 (2013) 1607-1640. | MR

[7] B. Kirchheim, Lipschitz minimizers of the 3-well problem having gradients of bounded variation. MIS. MPg. Preprint (12/1998).

[8] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. Vol. 44. of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1995). | MR | Zbl

Cité par Sources :