A famous conjecture made by Lord Rayleigh is the following: “The first eigenvalue of the Laplacian on an open domain of given measure with Dirichlet boundary conditions is minimum when the domain is a ball and only when it is a ball”. This conjecture was proved simultaneously and independently by Faber [G. Faber, Beweiss dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförfegige den leifsten Grundton gibt. Sitz. bayer Acad. Wiss. (1923) 169–172] and Krahn [E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaftdes Kreises. Math. Ann. 94 (1924) 97–100.]. We shall deal with the
DOI : 10.1051/cocv/2014017
Mots-clés : Symmetry, moving plane method, comparison principles, boundary point lemma
@article{COCV_2015__21_1_60_0, author = {Chorwadwala, Anisa M.H. and Mahadevan, Rajesh and Toledo, Francisco}, title = {On the {Faber{\textendash}Krahn} inequality for the {Dirichlet} $p${-Laplacian}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {60--72}, publisher = {EDP-Sciences}, volume = {21}, number = {1}, year = {2015}, doi = {10.1051/cocv/2014017}, zbl = {1319.35145}, mrnumber = {3348415}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2014017/} }
TY - JOUR AU - Chorwadwala, Anisa M.H. AU - Mahadevan, Rajesh AU - Toledo, Francisco TI - On the Faber–Krahn inequality for the Dirichlet $p$-Laplacian JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 60 EP - 72 VL - 21 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2014017/ DO - 10.1051/cocv/2014017 LA - en ID - COCV_2015__21_1_60_0 ER -
%0 Journal Article %A Chorwadwala, Anisa M.H. %A Mahadevan, Rajesh %A Toledo, Francisco %T On the Faber–Krahn inequality for the Dirichlet $p$-Laplacian %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 60-72 %V 21 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2014017/ %R 10.1051/cocv/2014017 %G en %F COCV_2015__21_1_60_0
Chorwadwala, Anisa M.H.; Mahadevan, Rajesh; Toledo, Francisco. On the Faber–Krahn inequality for the Dirichlet $p$-Laplacian. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 1, pp. 60-72. doi : 10.1051/cocv/2014017. https://www.numdam.org/articles/10.1051/cocv/2014017/
Uniqueness theorems for surfaces in the large. (Russian) Vestnik Leningrad Univ. 13 (1958) 5–8. | MR
,On the properties of some nonlinear eigenvalues. SIAM J. Math. Anal. 29 (1998) 437–451. | DOI | MR | Zbl
, , and ,
G. Barles, Remark on uniqueness results of the first eigenvalue of the
On the moving plane method and the sliding method. Boll. Soc. Brasiliera Mat. Nova Ser. 22 (1991) 1–37. | DOI | MR | Zbl
and ,
A proof of the Faber Krahn inequality for the first eigenvalue of the
Minimal rearrangements of Sobolev functions. Journal fur die reine und angewandle Mathematik 384 (1988) 153–179. | MR | Zbl
, and ,Beweis des Satzes, dass von allen homogenen Membranen gegebenen Umfantes und gegebener Spannung die kreisfrmige den tiefsten Grundton besizt. Math. Z. 3 (1918) 321–28. | DOI | JFM | MR
,A strong comparison principle for positive solutions of degenerate elliptic equations. Differ. Integral Eq. 13 (2000) 721–746. | MR | Zbl
and ,Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 493–516. | DOI | Numdam | MR | Zbl
,
Monotonicity and symmetry results for
G. Faber, Beweiss dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförfegige den leifsten Grundton gibt. Sitz. bayer Acad. Wiss. (1923) 169–172. | JFM
Overdetermined problems with possibly degenerate ellipticity, a geometric approach. Math. Zeit. 254 (2006) 117–132. | DOI | MR | Zbl
, and ,Remarks on an overdetermined problem. Calc. Var. Partial Differ. Eq. 31 (2008) 351–357. | DOI | MR | Zbl
and ,Über eine von Rayleigh formulierte Minimaleigenschaftdes Kreises. Math. Ann. 94 (1924) 97–100. | DOI | JFM | MR
,P. Lindqvist, On a nonlinear eigenvalue problem, Department of Mathematics. Norwegian University of Sciencie and technology N-7491, Trondheim, Norway. | MR | Zbl
On singular sets of solutions to
On the perturbation of eigenvalues for the
M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations. Prentice-Hall (1967). | MR | Zbl
Concavity properties of solutions to some degenerate quasilinear elliptic equations. Ann. Scuo. Normale Sup. di Pisa 14 (1987) 403–421. | Numdam | MR | Zbl
,A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43 (1971) 304–318. | DOI | MR | Zbl
,Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces. Ann. Mat. Pura. Appl. 120 (1979) 159–184. | DOI | MR | Zbl
,On the Dirichlet Problem for quasilinear equations. Commun. Partial Differ. Eq. 8 (1983) 773–817. | MR | Zbl
,- Geometric properties of extremal domains for the p-Laplacian operator, Journal of Differential Equations, Volume 423 (2025), p. 695 | DOI:10.1016/j.jde.2025.01.067
- Strict Faber–Krahn-type inequality for the mixed local–nonlocal operator under polarization, Proceedings of the Edinburgh Mathematical Society (2025), p. 1 | DOI:10.1017/s001309152500001x
- Optimal shapes for the first Dirichlet eigenvalue of the p-Laplacian and dihedral symmetry, Journal of Mathematical Analysis and Applications, Volume 508 (2022) no. 2, p. 125901 | DOI:10.1016/j.jmaa.2021.125901
- On the strict monotonicity of the first eigenvalue of the 𝑝-Laplacian on annuli, Transactions of the American Mathematical Society, Volume 370 (2018) no. 10, p. 7181 | DOI:10.1090/tran/7241
- The Faber–Krahn inequality for the first eigenvalue of the fractional Dirichlet p-Laplacian for triangles and quadrilaterals, Pacific Journal of Mathematics, Volume 288 (2017) no. 2, p. 425 | DOI:10.2140/pjm.2017.288.425
Cité par 5 documents. Sources : Crossref