A famous conjecture made by Lord Rayleigh is the following: “The first eigenvalue of the Laplacian on an open domain of given measure with Dirichlet boundary conditions is minimum when the domain is a ball and only when it is a ball”. This conjecture was proved simultaneously and independently by Faber [G. Faber, Beweiss dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförfegige den leifsten Grundton gibt. Sitz. bayer Acad. Wiss. (1923) 169–172] and Krahn [E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaftdes Kreises. Math. Ann. 94 (1924) 97–100.]. We shall deal with the -Laplacian version of this theorem.
DOI : 10.1051/cocv/2014017
Mots-clés : Symmetry, moving plane method, comparison principles, boundary point lemma
@article{COCV_2015__21_1_60_0, author = {Chorwadwala, Anisa M.H. and Mahadevan, Rajesh and Toledo, Francisco}, title = {On the {Faber{\textendash}Krahn} inequality for the {Dirichlet} $p${-Laplacian}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {60--72}, publisher = {EDP-Sciences}, volume = {21}, number = {1}, year = {2015}, doi = {10.1051/cocv/2014017}, zbl = {1319.35145}, mrnumber = {3348415}, language = {en}, url = {http://archive.numdam.org/articles/10.1051/cocv/2014017/} }
TY - JOUR AU - Chorwadwala, Anisa M.H. AU - Mahadevan, Rajesh AU - Toledo, Francisco TI - On the Faber–Krahn inequality for the Dirichlet $p$-Laplacian JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 60 EP - 72 VL - 21 IS - 1 PB - EDP-Sciences UR - http://archive.numdam.org/articles/10.1051/cocv/2014017/ DO - 10.1051/cocv/2014017 LA - en ID - COCV_2015__21_1_60_0 ER -
%0 Journal Article %A Chorwadwala, Anisa M.H. %A Mahadevan, Rajesh %A Toledo, Francisco %T On the Faber–Krahn inequality for the Dirichlet $p$-Laplacian %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 60-72 %V 21 %N 1 %I EDP-Sciences %U http://archive.numdam.org/articles/10.1051/cocv/2014017/ %R 10.1051/cocv/2014017 %G en %F COCV_2015__21_1_60_0
Chorwadwala, Anisa M.H.; Mahadevan, Rajesh; Toledo, Francisco. On the Faber–Krahn inequality for the Dirichlet $p$-Laplacian. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 1, pp. 60-72. doi : 10.1051/cocv/2014017. http://archive.numdam.org/articles/10.1051/cocv/2014017/
Uniqueness theorems for surfaces in the large. (Russian) Vestnik Leningrad Univ. 13 (1958) 5–8. | MR
,On the properties of some nonlinear eigenvalues. SIAM J. Math. Anal. 29 (1998) 437–451. | DOI | MR | Zbl
, , and ,G. Barles, Remark on uniqueness results of the first eigenvalue of the -Laplacian. In vol. 384 of Annales de la faculté des sciences de Toulouse (1988) 65–75. | Numdam | MR | Zbl
On the moving plane method and the sliding method. Boll. Soc. Brasiliera Mat. Nova Ser. 22 (1991) 1–37. | DOI | MR | Zbl
and ,A proof of the Faber Krahn inequality for the first eigenvalue of the -Laplacian. Ann. Mat. Pura Appl. Ser. 177 (1999) 225–231. | DOI | MR | Zbl
,Minimal rearrangements of Sobolev functions. Journal fur die reine und angewandle Mathematik 384 (1988) 153–179. | MR | Zbl
, and ,Beweis des Satzes, dass von allen homogenen Membranen gegebenen Umfantes und gegebener Spannung die kreisfrmige den tiefsten Grundton besizt. Math. Z. 3 (1918) 321–28. | DOI | JFM | MR
,A strong comparison principle for positive solutions of degenerate elliptic equations. Differ. Integral Eq. 13 (2000) 721–746. | MR | Zbl
and ,Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results. Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 493–516. | DOI | Numdam | MR | Zbl
,Monotonicity and symmetry results for -Laplace equations and applications. Adv. Differ. Equ. 5 (2000) 1179–1200. | MR | Zbl
and ,G. Faber, Beweiss dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförfegige den leifsten Grundton gibt. Sitz. bayer Acad. Wiss. (1923) 169–172. | JFM
Overdetermined problems with possibly degenerate ellipticity, a geometric approach. Math. Zeit. 254 (2006) 117–132. | DOI | MR | Zbl
, and ,Remarks on an overdetermined problem. Calc. Var. Partial Differ. Eq. 31 (2008) 351–357. | DOI | MR | Zbl
and ,Über eine von Rayleigh formulierte Minimaleigenschaftdes Kreises. Math. Ann. 94 (1924) 97–100. | DOI | JFM | MR
,P. Lindqvist, On a nonlinear eigenvalue problem, Department of Mathematics. Norwegian University of Sciencie and technology N-7491, Trondheim, Norway. | MR | Zbl
On singular sets of solutions to -Laplace equations. Chinese Ann. Math. 29 521–530 (2008). | DOI | MR | Zbl
,On the perturbation of eigenvalues for the -Laplacian. C.R. Acad. Sci. Paris 332 (2001) 893–898. | MR | Zbl
and ,M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations. Prentice-Hall (1967). | MR | Zbl
Concavity properties of solutions to some degenerate quasilinear elliptic equations. Ann. Scuo. Normale Sup. di Pisa 14 (1987) 403–421. | Numdam | MR | Zbl
,A symmetry problem in potential theory. Arch. Rational Mech. Anal. 43 (1971) 304–318. | DOI | MR | Zbl
,Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces. Ann. Mat. Pura. Appl. 120 (1979) 159–184. | DOI | MR | Zbl
,On the Dirichlet Problem for quasilinear equations. Commun. Partial Differ. Eq. 8 (1983) 773–817. | MR | Zbl
,Cité par Sources :