Axisymmetric critical points of a nonlocal isoperimetric problem on the two-sphere
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 1, pp. 247-270.

On the two dimensional sphere, we consider axisymmetric critical points of an isoperimetric problem perturbed by a long-range interaction term. When the parameter controlling the nonlocal term is sufficiently large, we prove the existence of a local minimizer with arbitrary many interfaces in the axisymmetric class of admissible functions. These local minimizers in this restricted class are shown to be critical points in the broader sense (i.e., with respect to all perturbations). We then explore the rigidity, due to curvature effects, in the criticality condition via several quantitative results regarding the axisymmetric critical points.

Reçu le :
DOI : 10.1051/cocv/2014031
Classification : 35R35, 49Q20, 74N15, 82B26, 82D60
Mots-clés : Nonlocal isoperimetric problem, sphere, axisymmetric critical points, self-assembly of diblock copolymers
Choksi, Rustum 1 ; Topaloglu, Ihsan 1 ; Tsogtgerel, Gantumur 1

1 Deparment of Mathematics and Statistics, McGill University, Montréal, Québec, H3A 0B9, Canada.
@article{COCV_2015__21_1_247_0,
     author = {Choksi, Rustum and Topaloglu, Ihsan and Tsogtgerel, Gantumur},
     title = {Axisymmetric critical points of a nonlocal isoperimetric problem on the two-sphere},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {247--270},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {1},
     year = {2015},
     doi = {10.1051/cocv/2014031},
     zbl = {1319.35307},
     mrnumber = {3348422},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2014031/}
}
TY  - JOUR
AU  - Choksi, Rustum
AU  - Topaloglu, Ihsan
AU  - Tsogtgerel, Gantumur
TI  - Axisymmetric critical points of a nonlocal isoperimetric problem on the two-sphere
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 247
EP  - 270
VL  - 21
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2014031/
DO  - 10.1051/cocv/2014031
LA  - en
ID  - COCV_2015__21_1_247_0
ER  - 
%0 Journal Article
%A Choksi, Rustum
%A Topaloglu, Ihsan
%A Tsogtgerel, Gantumur
%T Axisymmetric critical points of a nonlocal isoperimetric problem on the two-sphere
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 247-270
%V 21
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2014031/
%R 10.1051/cocv/2014031
%G en
%F COCV_2015__21_1_247_0
Choksi, Rustum; Topaloglu, Ihsan; Tsogtgerel, Gantumur. Axisymmetric critical points of a nonlocal isoperimetric problem on the two-sphere. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 1, pp. 247-270. doi : 10.1051/cocv/2014031. http://archive.numdam.org/articles/10.1051/cocv/2014031/

G. Alberti, R. Choksi and F. Otto, Uniform energy distribution for minimizers of an isoperimetric problem with long-range interactions. J. Amer. Math. Soc. 22 (2009) 569–605. | DOI | MR | Zbl

G. Alberti and S. Müller, A new approach to variational problems with multiple scales. Commun. Pure Appl. Math. 54 (2001) 761–825. | DOI | MR | Zbl

E. Acerbi, N. Fusco and M. Morini, Minimality via second variation for a nonlocal isoperimetric problem, Commun. Math. Phys. 322 (2013) 515–557. | DOI | MR | Zbl

V. Bögelein, F. Duzaar and N. Fusco, A quantitative isoperimetric inequality on the sphere. Preprint (2014). | MR

T.L. Chantawansri, A.W. Bosse, A. Hexemer, H.D. Ceniceros, C.J. García-Cervera, E.J. Kramer and G.H. Fredrickson, Self-consistent field theory simulations of block copolymers assembly on a sphere. Phys. Rev. E 75 (2007) 031802. | DOI

R. Choksi and M.A. Peletier, Small volume fraction limit of the diblock copolymer problem I: Sharp interface functional. SIAM J. Math. Anal. 42 (2010) 1334–1370. | DOI | MR | Zbl

R. Choksi and M.A. Peletier, Small volume fraction limit of the diblock copolymer problem II: Diffuse interface functional. SIAM J. Math. Anal. 43 (2011) 739–763. | DOI | MR | Zbl

R. Choksi and P. Sternberg, On the first and second variations of a nonlocal isoperimetric problem. J. Reine Angew. Math. 611 (2005) 75–108. | MR | Zbl

M. Cicalese and E. Spadaro, Droplet minimizers of an isoperimetric problem with long-range interactions. Commun. Pure Appl. Math. 66 (2013) 1298–1333. | DOI | MR | Zbl

M.P. do Carmo, Differential Geometry of Curves and Surfaces. Prentice Hall, New Jersey (1976). | MR | Zbl

T. Einert, Grain Boundary Scars on Spherical Crystals. Langmuir 21 (2005) 12076–12079. | DOI

B. K. Ganser, et. al., Assembly and Analysis of Conical Models for the HIV-1 Core. Science 80 (1999) 80–83. | DOI

S. Gillmor, J. Lee and X. Ren, The role of Gauss curvature in a membrane phase separation problem. Physica D 240 (2011) 1913–1927. | DOI | MR | Zbl

D. Goldman, C.B. Muratov and S. Serfaty, The Gamma-limit of the two-dimensional Ohta−Kawasaki energy. I. Droplet density. Arch. Rat. Mech. Anal. 210 (2013) 581–613. | DOI | MR | Zbl

D. Goldman, C.B. Muratov and S. Serfaty, The Gamma-limit of the two-dimensional Ohta−Kawasaki energy. II. Droplet arrangement at the sharp interface level via the renormalized energy. Arch. Rat. Mech. Anal. 212 (2014) 445–501. | DOI | MR | Zbl

T. Kohyama, D.M. Kroll and G. Gompper, Budding of crystalline domains in fluid membranes. Phys. Rev. E 68 (2003) 061905. | DOI

F. Morgan, M. Hutchings and H. Howards, The isoperimetric problem on surfaces of revolution of decreasing Gauss curvature. Trans. Amer. Math. Soc. 352 (2000) 4889–4909. | DOI | MR | Zbl

M. Morini and P. Sternberg, Cascade of minimizers for a nonlocal isoperimetric problem in thin domains. SIAM J. Math. Anal. 46 (2014) 2033–2051. | DOI | MR | Zbl

S. Müller, Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. Partial Differ. Equ. 1 (1993) 169–204. | DOI | MR | Zbl

C.B. Muratov, Droplet phases in non-local Ginzburg-Landau models with Coulomb repulsion in two dimensions. Commun. Math. Phys. 299 (2010) 45–87. | DOI | MR | Zbl

T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts. Macromolecules 19 (1986) 2621–2632. | DOI

M.A. Peletier and M. Veneroni, Stripe patterns in a model for block copolymers. Math. Model. Meth. Appl. Sci. 20 (2010) 843–907. | DOI | MR | Zbl

X. Ren and J. Wei, On energy minimizers of the diblock copolymer problem. Interfaces Free Bound. 5 (2003) 193–238. | DOI | MR | Zbl

X. Ren and J. Wei, On the spectra of three dimensional lamellar solutions of the diblock copolymer problem. SIAM J. Math. Anal. 35 (2003) 1–32. | DOI | MR | Zbl

X. Ren and J. Wei, Oval shaped droplet solutions in the saturation process of some pattern formation problems. SIAM J. Math. Anal. 70 (2009) 1120–1138. | DOI | MR | Zbl

M. Ritore, Constant geodesic curvature curves and isoperimetric domains in rotationally symmetric surfaces. Commun. Anal. Geom. 9 (2001) 1093–1138. | DOI | MR | Zbl

E.N. Spadaro, Uniform energy and density distribution: diblock copolymers’ functional. Interfaces Free Bound. 11 (2009) 447–474. | DOI | MR | Zbl

P. Sternberg and I. Topaloglu, On the global minimizers of a nonlocal isoperimetric problem in two dimensions. Interfaces Free Bound. 13 (2011) 155–169. | DOI | MR | Zbl

P. Tang, F. Qiu, H. Zhang and Y. Yang, Phase separation patterns for diblock copolymers on spherical surfaces: A finite volume method. Phys. Rev. E 72 (2005) 016710. | DOI

I. Topaloglu, On a nonlocal isoperimetric problem on the two-sphere. Commun. Pure Appl. Anal. 12 (2013) 597–620. | DOI | MR | Zbl

C. Varea, J.L. Aragon and R.A. Barrio, Turing patterns on a sphere. Phys. Rev. E 60 (1999) 4588–4592. | DOI

N.K. Yip, Structure of stable solutions of a one-dimensional variational problem. ESAIM: COCV 12 (2006) 721–751. | Numdam | MR | Zbl

Cité par Sources :