Structure of stable solutions of a one-dimensional variational problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 721-751.

We prove the periodicity of all H 2 -local minimizers with low energy for a one-dimensional higher order variational problem. The results extend and complement an earlier work of Stefan Müller which concerns the structure of global minimizer. The energy functional studied in this work is motivated by the investigation of coherent solid phase transformations and the competition between the effects from regularization and formation of small scale structures. With a special choice of a bilinear double well potential function, we make use of explicit solution formulas to analyze the intricate interactions between the phase boundaries. Our analysis can provide insights for tackling the problem with general potential functions.

DOI : 10.1051/cocv:2006019
Classification : 47J20, 49K20, 34K26
Mots-clés : higher order functional, local minimizer
@article{COCV_2006__12_4_721_0,
     author = {Yip, Nung Kwan},
     title = {Structure of stable solutions of a one-dimensional variational problem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {721--751},
     publisher = {EDP-Sciences},
     volume = {12},
     number = {4},
     year = {2006},
     doi = {10.1051/cocv:2006019},
     mrnumber = {2266815},
     zbl = {1117.49025},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv:2006019/}
}
TY  - JOUR
AU  - Yip, Nung Kwan
TI  - Structure of stable solutions of a one-dimensional variational problem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2006
SP  - 721
EP  - 751
VL  - 12
IS  - 4
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv:2006019/
DO  - 10.1051/cocv:2006019
LA  - en
ID  - COCV_2006__12_4_721_0
ER  - 
%0 Journal Article
%A Yip, Nung Kwan
%T Structure of stable solutions of a one-dimensional variational problem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2006
%P 721-751
%V 12
%N 4
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv:2006019/
%R 10.1051/cocv:2006019
%G en
%F COCV_2006__12_4_721_0
Yip, Nung Kwan. Structure of stable solutions of a one-dimensional variational problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 12 (2006) no. 4, pp. 721-751. doi : 10.1051/cocv:2006019. http://archive.numdam.org/articles/10.1051/cocv:2006019/

[1] R.A. Abeyaratne, C. Chu and R.D. James, Kinetics of materials with wiggly energies: theory and application to the evolution of twinning microstructures in a Cu-Al-Ni shape. Philos. Mag. Ser. A 73 (1996) 457-497.

[2] G. Alberti and S. Müller, A New Approach to Variational Problems with Multiple Scales. Comm. Pure. Appl. Math. 54 (2001) 761-825. | Zbl

[3] J. Ball and R.D. James, Fine phase mixtures as minimizers of the energy. Arch. Rat. Mech. Anal. 100 (1987) 13-52. | Zbl

[4] J. Ball, R.D. James, Proposed experimental tests of a theory of fine structures and the two-well problem. Philos. Trans. R. Soc. Lond. A 338 (1992) 389-450. | Zbl

[5] P.W. Bates and J. Xun, Metastable Patterns for the Cahn-Hilliard Equations, Part I. J. Diff. Eq. 111 (1994) 421-457. | Zbl

[6] J. Carr, M.E. Gurtin and M. Slemrod, Structured Phase Transitions on a Finite Interval. Arch. Rat. Mech. Anal. 86 (1984) 317-351. | Zbl

[7] J. Carr and R.L. Pego, Metastable Patterns in Solutions of u t =ϵ 2 u xx -f(u). Comm. Pure Appl. Math. 42 (1989) 523-576. | Zbl

[8] A.G. Khachaturyan, Theory of Structural Transformations in Solids. New York, Wiley-Interscience (1983).

[9] R.V. Kohn and S. Müller, Branching of twins near a austenite/twinned-martensite interface. Philos. Mag. Ser. A 66 (1992) 697-715.

[10] R.V. Kohn and S. Müller, Surface energy and microstructure in coherent phase transitions. Comm. Pure Appl. Math. 47 (1994) 405-435. | Zbl

[11] R.V. Kohn and P. Sternberg, Local minimizers and singular perturbations. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 69-84. | Zbl

[12] S. Müller, Singular perturbations as a selection criterion for periodic minimizing sequences. Calc. Var. 1 (1993) 169-204. | Zbl

[13] X. Ren, L. Truskinovsky, Finite Scale Microstructures in Nonlocal Elasticity. J. Elasticity 59 (2000) 319-355. | Zbl

[14] X. Ren and J. Wei, On the multiplicity of solutions of two nonlocal variational problems. SIAM J. Math. Anal. 31 (2000) 909-924. | Zbl

[15] X. Ren and J. Wei, On energy minimizers of the diblock copolymer problem. Interfaces Free Bound. 5 (2003) 193-238. | Zbl

[16] L. Truskinovsky and G. Zanzotto, Ericksen's Bar Revisited: Energy Wiggles. J. Mech. Phys. Solids 44 (1996) 1371-1408.

[17] A. Vainchtein, T. Healey, P. Rosakis and L. Truskinovsky, The role of the spinodal region in one-dimensional martensitic phase transitions. Physica D 115 (1998) 29-48. | Zbl

[18] N.K. Yip, manuscript (2005).

Cité par Sources :