Equivalence of gradient flows and entropy solutions for singular nonlocal interaction equations in 1D
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 414-441.

We prove the equivalence between the notion of Wasserstein gradient flow for a one-dimensional nonlocal transport PDE with attractive/repulsive Newtonian potential on one side, and the notion of entropy solution of a Burgers-type scalar conservation law on the other. The solution of the former is obtained by spatially differentiating the solution of the latter. The proof uses an intermediate step, namely the L2 gradient flow of the pseudo-inverse distribution function of the gradient flow solution. We use this equivalence to provide a rigorous particle-system approximation to the Wasserstein gradient flow, avoiding the regularization effect due to the singularity in the repulsive kernel. The abstract particle method relies on the so-called wave-front-tracking algorithm for scalar conservation laws. Finally, we provide a characterization of the subdifferential of the functional involved in the Wasserstein gradient flow.

Reçu le :
DOI : 10.1051/cocv/2014032
Classification : 35A02, 35F20, 45K05, 35L65, 70F45, 92D25
Mots-clés : Wasserstein gradient flows, nonlocal interaction equations, entropy solutions, scalar conservation laws, particle approximation
Bonaschi, Giovanni A. 1, 2 ; Carrillo, José A. 3 ; Di Francesco, Marco 4 ; Peletier, Mark A. 4

1 Institute for Complex Molecular Systems and Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
2 Dipartimento di Matematica, Università di Pavia, 27100 Pavia, Italy.
3 Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom.
4 Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom.
@article{COCV_2015__21_2_414_0,
     author = {Bonaschi, Giovanni A. and Carrillo, Jos\'e A. and Di Francesco, Marco and Peletier, Mark A.},
     title = {Equivalence of gradient flows and entropy solutions for singular nonlocal interaction equations in {1D}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {414--441},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {2},
     year = {2015},
     doi = {10.1051/cocv/2014032},
     mrnumber = {3348406},
     zbl = {1316.35077},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2014032/}
}
TY  - JOUR
AU  - Bonaschi, Giovanni A.
AU  - Carrillo, José A.
AU  - Di Francesco, Marco
AU  - Peletier, Mark A.
TI  - Equivalence of gradient flows and entropy solutions for singular nonlocal interaction equations in 1D
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 414
EP  - 441
VL  - 21
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2014032/
DO  - 10.1051/cocv/2014032
LA  - en
ID  - COCV_2015__21_2_414_0
ER  - 
%0 Journal Article
%A Bonaschi, Giovanni A.
%A Carrillo, José A.
%A Di Francesco, Marco
%A Peletier, Mark A.
%T Equivalence of gradient flows and entropy solutions for singular nonlocal interaction equations in 1D
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 414-441
%V 21
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2014032/
%R 10.1051/cocv/2014032
%G en
%F COCV_2015__21_2_414_0
Bonaschi, Giovanni A.; Carrillo, José A.; Di Francesco, Marco; Peletier, Mark A. Equivalence of gradient flows and entropy solutions for singular nonlocal interaction equations in 1D. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 414-441. doi : 10.1051/cocv/2014032. http://archive.numdam.org/articles/10.1051/cocv/2014032/

L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lect. Math. ETH Zürich, 2nd edition. Birkhäuser Verlag, Basel (2008). | MR | Zbl

D. Balagué, J.A. Carrillo, T. Laurent and G. Raoul, Dimensionality of local minimizers of the interaction energy. Arch. Ration. Mech. Anal. 209 (2013) 1055–1088. | DOI | MR | Zbl

D. Balague, J.A. Carrillo, T. Laurent and G. Raoul, Nonlocal interactions by repulsive-attractive potentials: radial ins/stability. Phys. D 260 (2013) 5–25. | DOI | MR | Zbl

A.L. Bertozzi and J. Brandman, Finite-time blow-up of L-weak solutions of an aggregation equation. Commun. Math. Sci. 8 (2010) 45–65. | DOI | MR | Zbl

A.L. Bertozzi, J.A. Carrillo and T. Laurent, Blow-up in multidimensional aggregation equations with mildly singular interaction kernels. Nonlinearity 22 (2009) 683–710. | DOI | MR | Zbl

A.L. Bertozzi and T. Laurent, The behavior of solutions of multidimensional aggregation equations with mildly singular interaction kernels. Chin. Ann. Math. Ser. B 30 (2009) 463–482. | DOI | MR | Zbl

A.L. Bertozzi, T. Laurent and J. Rosado, Lp theory for the multidimensional aggregation equation. Comm. Pure Appl. Math. 64 (2011) 45–83. | DOI | MR | Zbl

A. Blanchet, J. Dolbeault and B. Perthame, Two-dimensional keller-segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Eq. 44 (2006). | MR | Zbl

F. Bolley, Y. Brenier and G. Loeper, Contractive metrics for scalar conservation laws. J. Hyperbolic Differ. Eq. 2 (2005) 91–107. | DOI | MR | Zbl

G.A. Bonaschi, Gradient flows driven by a non-smooth repulsive interaction potential. Master’s thesis, University of Pavia, Italy (2011). Preprint arXiv:1310.3677.

Y. Brenier, L2 formulation of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal. 193 (2009) 1–19. | DOI | MR | Zbl

Y. Brenier, W. Gangbo, G. Savaré and M. Westdickenberg, Sticky particle dynamics with interactions. J. Math. Pures Appl. 99 (2013) 577–617. | DOI | MR | Zbl

A. Bressan, Global solutions of systems of conservation laws by wave-front tracking. J. Math. Anal. Appl. 170 (1992) 414–432. | DOI | MR | Zbl

A. Bressan, Hyperbolic systems of conservation laws, The one-dimensional Cauchy problem. In vol. 20 of Oxford Lect. Ser. Math. Appl. Oxford University Press, Oxford (2000). | MR | Zbl

H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. In vol. 5 of Math. Stud. Notas Mat. Publishing Co., Amsterdam (1973). | MR | Zbl

M. Burger and M. Di Francesco, Large time behavior of nonlocal aggregation models with nonlinear diffusion. Netw. Heterog. Media 3 (2008) 749–785. | DOI | MR | Zbl

J.A. Carrillo, Y.P. Choi and M. Hauray, The derivation of Swarming models: Mean-Field Limit and Wasserstein distances. Collective Dynamics From Bacteria to Crowds, vol. 553 of CISM (2014) 1–46. | MR

J.A. Carrillo, M. Di Francesco, A. Figalli, T. Laurent and D. Slepčev, Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156 (2011) 229–271. | DOI | MR | Zbl

J.A. Carrillo, L.C.F. Ferreira and J.C. Precioso, A mass-transportation approach to a one dimensional fluid mechanics model with nonlocal velocity. Adv. Math. 231 (2012) 306–327. | DOI | MR | Zbl

J.A. Carrillo, S. Lisini and E. Mainini, Gradient flows for non-smooth interaction potentials. Nonlinear Anal. Theor. Methods Appl. 100 (2014) 122–147. | DOI | MR | Zbl

C.M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38 (1972) 33–41. | DOI | MR | Zbl

M. Di Francesco and D. Matthes, Curves of steepest descent are entropy solutions for a class of degenerate convection-diffusion equations. Calc. Var. Part. Differ. Eq. 50 (2014) 199–230. | DOI | MR | Zbl

R.J. Diperna, Global existence of solutions to nonlinear hyperbolic systems of conservation laws. J. Differ. Eq. 20 (1976) 187–212. | DOI | MR | Zbl

R.L. Dobrušin, Vlasov equations. Funktsional. Anal. i Prilozhen. 13 (1979) 48–58, 96. | MR | Zbl

L.C. Evans, Partial differential equations. In vol. 19 of Grad. Stud. Math. American Mathematical Society, Providence, RI (1998). | MR | Zbl

K.Fellner and G. Raoul, Stable stationary states of non-local interaction equations. Math. Models Methods Appl. Sci. 20 (2010) 2267–2291. | DOI | MR | Zbl

K. Fellner and G. Raoul, Stability of stationary states of non-local equations with singular interaction potentials. Math. Comput. Model. 53 (2011) 1436–1450. | DOI | MR | Zbl

R.C. Fetecau, Y. Huang and T. Kolokolnikov, Swarm dynamics and equilibria for a nonlocal aggregation model. Nonlinearity 24 (2011) 2681–2716. | DOI | MR | Zbl

N. Gigli and F. Otto, Entropic burgers’ equation via a minimizing movement scheme based on the wasserstein metric. Calc. Var. Partial Differ. Eq. 1–26 (2012). | MR | Zbl

F. Golse, The mean-field limit for the dynamics of large particle systems. In Journées “Équations aux Dérivées Partielles”, pages Exp. No. IX, 47. Univ. Nantes, Nantes (2003). | Numdam | MR | Zbl

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis. Trans. Amer. Math. Soc. 329 (1992) 819–824. | DOI | MR | Zbl

E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26 (1970) 399–415. | DOI | MR | Zbl

S.N. Kružkov, First order quasilinear equations in serveral independent variables. Math. USSR Sb 10 (1970) 217–243. | DOI | MR | Zbl

S.N. Kružkov, Generalized solutions of the Cauchy problem in the large for first order nonlinear equations. Dokl. Akad. Nauk. SSSR 187 (1969) 29–32. | MR | Zbl

P.G. LeFloch, Hyperbolic Systems of Conservation Laws: The theory of classical and nonclassical shock waves. Springer (2002). | MR | Zbl

H. Li and G. Toscani, Long-time asymptotics of kinetic models of granular flows. Arch. Ration. Mech. Anal. 172 (2004) 407–428. | DOI | MR | Zbl

R.J. Mccann, A convexity principle for interacting gases. Adv. Math. 128 (1997) 153–179. | DOI | MR | Zbl

A. Mogilner and L. Edelstein-Keshet, A non-local model for a swarm. J. Math. Biol. 38 (1999) 534–570. | DOI | MR | Zbl

L. Natile and G. Savaré, A Wasserstein approach to the one-dimensional sticky particle system. SIAM J. Math. Anal. 41 (2009) 1340–1365. | DOI | MR | Zbl

O.A. Oleinik, Discontinuous solutions of nonlinear differential equations. Amer. Math. Soc. Transl. 26 (1963) 95–172. | MR | Zbl

C.S. Patlak, Random walk with persistence and external bias. Bull. Math. Biophys. 15 (1953) 311–338. | DOI | MR | Zbl

D. Serre, Systems of conservation laws. 1. Hyperbolicity, entropies, shock waves. Translated from the 1996 French original by I.N. Sneddon. Cambridge University Press, Cambridge (1999). | Zbl

C.M. Topaz, A.L. Bertozzi and M.E. Lewis, A nonlocal continuum model for biological aggregations. Bull. Math. Biol. 68 (2006) 1601–1623. | DOI | MR | Zbl

C.J. Van Duijn, L.A. Peletier and I.S. Pop, A new class of entropy solutions of the buckley-leverett equation. SIAM J. Math. Anal. 39 (2007) 507–536. | DOI | MR | Zbl

C. Villani, Topics in optimal transportation. In vol. 58 of Grad. Stud. Math. American Mathematical Society, Providence, RI (2003). | MR | Zbl

G.B. Whitham, Linear and nonlinear waves. John Wiley & Sons (1974). | MR | Zbl

Cité par Sources :