Optimal feedback control for undamped wave equations by solving a HJB equation
ESAIM: Control, Optimisation and Calculus of Variations, Volume 21 (2015) no. 2, pp. 442-464.

An optimal finite-time horizon feedback control problem for (semi-linear) wave equations is presented. The feedback law can be derived from the dynamic programming principle and requires to solve the evolutionary Hamilton−Jacobi Bellman (HJB) equation. Classical discretization methods based on finite elements lead to approximated problems governed by ODEs in high dimensional spaces which makes the numerical resolution by the HJB approach infeasible. In the present paper, an approximation based on spectral elements is used to discretize the wave equation. The effect of noise is considered and numerical simulations are presented to show the relevance of the approach.

Received:
DOI: 10.1051/cocv/2014033
Classification: 49J20, 35L05, 49J15
Keywords: Optimal control, wave equation, Hamilton−Jacobi Bellman equation, spectral elements
Kröner, Axel 1; Kunisch, Karl 2; Zidani, Hasnaa 3

1 Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenberger Straße 69, 4040 Linz, Austria.
2 University of Graz, Institute of Mathematics and Scientific Computing, Heinrichstr. 36, 8010 Graz, Austria and Johann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenberger Straße 69, 4040 Linz, Austria.
3 INRIA Saclay & ENSTA ParisTech, 828 Boulevard des Marchaux, 91762 Palaiseau cedex, France.
@article{COCV_2015__21_2_442_0,
     author = {Kr\"oner, Axel and Kunisch, Karl and Zidani, Hasnaa},
     title = {Optimal feedback control for undamped wave equations by solving a {HJB} equation},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {442--464},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {2},
     year = {2015},
     doi = {10.1051/cocv/2014033},
     zbl = {1318.49069},
     mrnumber = {3348407},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2014033/}
}
TY  - JOUR
AU  - Kröner, Axel
AU  - Kunisch, Karl
AU  - Zidani, Hasnaa
TI  - Optimal feedback control for undamped wave equations by solving a HJB equation
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 442
EP  - 464
VL  - 21
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2014033/
DO  - 10.1051/cocv/2014033
LA  - en
ID  - COCV_2015__21_2_442_0
ER  - 
%0 Journal Article
%A Kröner, Axel
%A Kunisch, Karl
%A Zidani, Hasnaa
%T Optimal feedback control for undamped wave equations by solving a HJB equation
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 442-464
%V 21
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2014033/
%R 10.1051/cocv/2014033
%G en
%F COCV_2015__21_2_442_0
Kröner, Axel; Kunisch, Karl; Zidani, Hasnaa. Optimal feedback control for undamped wave equations by solving a HJB equation. ESAIM: Control, Optimisation and Calculus of Variations, Volume 21 (2015) no. 2, pp. 442-464. doi : 10.1051/cocv/2014033. http://archive.numdam.org/articles/10.1051/cocv/2014033/

A. Alla and M. Falcone, An adaptive POD approximation method for the control of advection-diffusion equations. Control and Optimization with PDE Constraints. Edited by C. Kunisch, K. von Winckel, G. Bredies, K. Clason. In vol. 164 of Int. Ser. Numer. Math. Springer (2013). | MR | Zbl

A. Altarovici, O. Bokanowski and H. Zidani, A general Hamilton−Jacobi framework for non-linear state-constrained control problems. ESAIM: COCV 19 (2013) 337–357. | Numdam | MR | Zbl

H.T. Banks and K. Kunisch, The linear regulator problem for parabolic systems. SIAM J. Control. Optim. 22 (1984) 499–515. | DOI | MR | Zbl

E. Bänsch and P. Benner, Stabilization of incompressible flow problems by Riccati-based feedback. Constrained Optimization and Optimal Control for Partial Differential Equations. Edited by G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich and S. Ulbrich. Birkhäuser (2012) 5–20. | MR

V. Barbu, S.S. Rodrigues and A. Shirikyan, Internal exponential stabilization to a nonstationary solution for 3d Navier–Stokes equation, SIAM J. Control Optim. 49 (2011) 1454–1478. | DOI | MR | Zbl

M. Bardi and I. Capuzzo-Dolcetta, Optimal Control and Viscosity Solutions of Hamilton−Jacobi-Bellman Equations. Birkhäuser, Boston (2008). | Zbl

O. Bokanowski, Y. Cheng and C.-W. Shu, A discontinuous Galerkin scheme for front propagation with obstacles. Numer. Math. (2013) 1–31. | MR | Zbl

O. Bokanowski, E. Cristiani and H. Zidani, An efficient data structure and accurate scheme to solve front propagation problems. J. Sci. Comput. 42 (2010) 251–273. | DOI | MR | Zbl

O. Bokanowski, A. Desilles and H. Zidani, ROC-HJ-Solver. A C++ library for solving HJ equations (2013).

O. Bokanowski, N. Forcadel and H. Zidani, A general Hamilton-Jacobi framework for non-linear state constrained control problems. SIAM J. Control Optim. 48 (2010) 4292–4316.

O. Bokanowski, J. Garcke, M. Griebel and I. Klompmaker, An adaptive sparse grid semi-Lagrangian scheme for first order Hamilton-Jacobi Bellman Equations. J. Sci. Comput. 55 (2012) 575–605. | DOI | MR | Zbl

O. Bokanowski, N. Megdich and H. Zidani, Convergence of a non-monotone scheme for Hamilton−Jacobi-Bellman equations with discontinuous initial data. Numer. Math. 115 (2010) 1–44. | DOI | MR | Zbl

J.-M. Buchot, L. Thevenet and J.P. Raymond, Nonlinear feedback stabilization of a two dimensional Burgers equation. ESAIM: COCV 16 (2010) 929–955. | Numdam | MR | Zbl

C. Canuto, M.Y. Hussaini., A. Quarteroni and T.A. Zang, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Scientific Computation. Springer-Verlag, Berlin, Heidelberg (2007). | MR

M. Falcone and R. Ferreti, Semi-Lagrangian Approximation Schemes for Linear and Hamilton−Jacobi Equations. Appl. Math. Society for Industrial and Applied Mathematics (2014). | MR

R. Ferretti, Internal approximation schemes for optimal control problems in Hilbert spaces J. Math. Systems 7 (1997) 1–25. | MR

L. Gaudio and A. Quarteroni, Spectral element discretization of optimal control problems. Spectral and High Order Methods for Partial Differential Equations. Edited by J.S. Hesthaven and E.M. Rønquist. In vol. 76 of Lect. Notes in Comput. Sci. Engrg. Springer Berlin Heidelberg (2011) 393–401. | MR | Zbl

M. Gerdts, G. Greif and H.J. Pesch, Numerical optimal control of the wave equation: Optimal boundary control of a string to rest in finite time. Math. Comput. Simul. 79 (2008) 1020–1032. | DOI | MR | Zbl

J.S. Gibson, An analysis of optimal modal regulation: convergence and stability. SIAM J. Control. Optim. 19 (1981) 686–707. | DOI | MR | Zbl

J.S. Gibson, A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems. SIAM J. Control Optim. 29 (1991) 499–515. | DOI | MR | Zbl

S. Gombao and J.-P. Raymond, Hamilton−Jacobi equations for control problems of parabolic equations. ESAIM: COCV 12 (2006) 311–349. | Numdam | MR | Zbl

D. Gottlieb and S.A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications. Capital City Press, Montpelier, Vermont, USA (1991).

M. Gugat and G. Leugering, L -norm minimal control of the wave equation: on the weakness of the bang-bang principle. ESAIM: COCV 14 (2008) 254–283. | Numdam | MR | Zbl

E. Hernández, D. Kalise and E. Otárola, Numerical approximation of the LQR problem in a strongly damped wave equation. Comput. Optim. Appl. 47 (2010) 161–178. | DOI | MR | Zbl

E. Hernández, D. Kalise and E. Otárola, A locking-free scheme for the LQR control of a Timoshenko beam. Comput. Appl. Math. 235 (2011) 1383–1393. | DOI | MR | Zbl

H. Ishii, Uniqueness of unbounded viscosity solution of Hamilton−Jacobi equations. Indiana Univ. Math. J. 33 (1984) 721–748. | DOI | MR | Zbl

K. Ito, On the regularity of solutions of an operator Riccati equation arising in linear quadratic optimal control problems for hereditary differential systems. J. Math. Anal. Appl. 140 (1989) 396–406. | DOI | MR | Zbl

M. Jensen and I. Smears, On the convergence of finite element methods for Hamilton–Jacobi–Bellman Equations. SIAM J. Numer. Anal. 51 (2013) 137–162. | DOI | MR | Zbl

A. Kröner and K. Kunisch, A minimum effort optimal control problem for the wave equation. Comput. Optim. Appl. 57 (2014) 241–270. | DOI | MR | Zbl

A. Kröner, K. Kunisch and B. Vexler, Semi-smooth Newton methods for optimal control of the wave equation with control constraints. SIAM J. Control Optim. 49 (2011) 830–858. | DOI | MR | Zbl

K. Kunisch, S. Volkwein and L. Xie, HJB-POD based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Systems 4 (2004) 701–722. | DOI | MR | Zbl

K. Kunisch and D. Wachsmuth, On time optimal control of the wave equation, its regularization and optimality system. ESAIM: COCV 19 (2013) 317–336. | Numdam | MR | Zbl

K. Kunisch and L. Xie, POD-based feedback control of the Burgers equation by solving the evolutionary HJB equation. Comput. Math. Appl. 49 (2005) 1113–1126. | DOI | MR | Zbl

I. Lasiecka and R. Triggiani, Differential and Algebraic Riccati Equations with Applications to Boundary/Point Control Problems: Continuous Theory and Approximation Theory. In vol. 164. Springer-Verlag (1991) 160. | MR | Zbl

J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. In vol. I. Springer-Verlag, Berlin (1972). | MR | Zbl

V. Mehrmann and H. Xu, Explicit solutions for a Riccati equation from transport theory. SIAM J. Matrix Anal. Appl. 30 (2008) 1339–1357. | DOI | MR | Zbl

S. Osher and C.-W. Shu, Essentially nonoscillatory schemes for Hamilton−Jacobi equations. SIAM J. Numer. Anal. 28 (1991) 907–922. | DOI | MR | Zbl

A.T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion. J. Comput. Phys. 54 (1984) 468–488. | DOI | Zbl

J.P. Raymond, Feedback boundary stabilization of the two-dimensional Navier–Stokes equations. SIAM J. Control Optim. 45 (2005) 790–828. | DOI | MR | Zbl

J.A. Sethian, Fast marching methods. SIAM Reviews 41 (1999) 119–235. | DOI | MR | Zbl

E. Zuazua, Exact controllability for semilinear wave equations in one space dimension. Ann. Inst. Henri Poincaré, Section C 10 (1993) 109–129. | DOI | Numdam | MR | Zbl

Cited by Sources: