A corrector for a wave problem with periodic coefficients in a 1D bounded domain
ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 465-486.

We consider a wave problem posed in a bounded open interval of R, where the coefficients, the initial conditions and the right-hand side are highly oscillating, periodic in the space variable and almost periodic in the time one. Our purpose is to find not only the corresponding limit equation but a corrector, i.e. a strong approximation in the H 1 topology, which for the wave equation is known to be non-local. In a previous paper we have studied this problem in the whole R N , here we consider the case of a bounded domain in dimension one. Thus the novelty in this paper is the analysis of the boundary conditions.

Reçu le :
DOI : 10.1051/cocv/2014034
Classification : 35B27, 35L20
Mots-clés : Wave equation, highly oscillating coefficients, homogenization, corrector, boundary conditions
Casado-Díaz, Juan 1 ; Couce-Calvo, Julio 1 ; Maestre, Faustino 1 ; Martín-Gómez, José D. 1

1 Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Sevilla, Spain.
@article{COCV_2015__21_2_465_0,
     author = {Casado-D{\'\i}az, Juan and Couce-Calvo, Julio and Maestre, Faustino and Mart{\'\i}n-G\'omez, Jos\'e D.},
     title = {A corrector for a wave problem with periodic coefficients in a {1D} bounded domain},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {465--486},
     publisher = {EDP-Sciences},
     volume = {21},
     number = {2},
     year = {2015},
     doi = {10.1051/cocv/2014034},
     zbl = {1320.35041},
     mrnumber = {3348408},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2014034/}
}
TY  - JOUR
AU  - Casado-Díaz, Juan
AU  - Couce-Calvo, Julio
AU  - Maestre, Faustino
AU  - Martín-Gómez, José D.
TI  - A corrector for a wave problem with periodic coefficients in a 1D bounded domain
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2015
SP  - 465
EP  - 486
VL  - 21
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2014034/
DO  - 10.1051/cocv/2014034
LA  - en
ID  - COCV_2015__21_2_465_0
ER  - 
%0 Journal Article
%A Casado-Díaz, Juan
%A Couce-Calvo, Julio
%A Maestre, Faustino
%A Martín-Gómez, José D.
%T A corrector for a wave problem with periodic coefficients in a 1D bounded domain
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2015
%P 465-486
%V 21
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2014034/
%R 10.1051/cocv/2014034
%G en
%F COCV_2015__21_2_465_0
Casado-Díaz, Juan; Couce-Calvo, Julio; Maestre, Faustino; Martín-Gómez, José D. A corrector for a wave problem with periodic coefficients in a 1D bounded domain. ESAIM: Control, Optimisation and Calculus of Variations, Tome 21 (2015) no. 2, pp. 465-486. doi : 10.1051/cocv/2014034. http://archive.numdam.org/articles/10.1051/cocv/2014034/

G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. | DOI | MR | Zbl

G. Allaire and L. Friz, Localization of high-frequence waves propagating in a locally periodic medium. In vol. 140A, Proc. of Roy. Soc. Edinburgh (2010) 897–926. | MR | Zbl

G. Allaire, M. Palombaro and J. Rauch, Diffractive behavior of the wave equation in periodic media: weak convergence analysis. Ann. Mat. Pura Appl. 188 (2009) 561–589. | DOI | MR | Zbl

A. Bensoussan, J.L. Lions and G. Papanicolau, Asymptotic analysis for periodic structures. North Holland, Amsterdam (1978). | MR | Zbl

S. Brahim-Otsmane, G.A. Francfort and F. Murat, Correctors for the homogenization of the wave and heat equations. J. Math. Pures Appl. 71 (1992) 197–231. | MR | Zbl

M. Brassart and M. Lenczner, A two scale model for the periodic homogenization of the wave equation. J. Math. Pure Appl. 93 (2010) 474–517. | DOI | MR | Zbl

J. Casado-Díaz and I. Gayte, A general compactness result and its application the two-scale convergence of almost periodic functions. C. R. Acad. Sci. Paris I 323 (1996) 329–334. | MR | Zbl

J. Casado-Díaz and I. Gayte, The two-scale convergence method applied to generalized Besicovitch spaces. Proc. Roy. Soc. London A 458 (2002) 2925–2946. | DOI | MR | Zbl

J. Casado-Díaz, J. Couce-Calvo, F. Maestre and J.D. Martín-Gómez, Homogenization and corrector for the wave equation with discontinuos coefficients in time. J. Math. Anal. Appl. 379 (2011) 664–681. | DOI | MR | Zbl

J. Casado-Díaz, J. Couce-Calvo, F. Maestre and J.D. Martín-Gómez, Homogenization and correctors for the wave equation with periodic coefficients. Math. Models Methods Appl. Sci. 24 (2014) 1343–1388. | DOI | MR | Zbl

F. Colombini and S. Spagnolo, On the convergence of solutions of hyperbolic equations. Commun. Partial Differ. Eq. 3 (1978) 77–103. | DOI | MR | Zbl

G.A. Francfort and F. Murat, Oscillations and energy densities in the wave equation. Commun. Partial Differ. Eq. 17 (1992) 1785–1865. | DOI | MR | Zbl

F. Murat, H-convergence. Séminaire d’Analyse Fonctionnelle et Numérique, 1977-78. Université d’Alger; F. Murat, L. Tartar. H-convergence. Topics in the Mathematical Modelling of Composite Materials. In vol. 31 of Progr. Nonlin. Differ. Eq. Appl., edited by L. Cherkaev and R.V. Kohn. Birkaüser, Boston (1998) 21–43. | MR | Zbl

G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. | DOI | MR | Zbl

G. Nguetseng, Homogenization structures and applications I. Z. Anal. Anwen. 22 (2003) 73–107. | DOI | MR | Zbl

G. Nguetseng, M. Sango and J.L. Woukeng, Reiterated ergodic algebras and applications. Commun. Math. Phys. 300 (2010) 835–876. | DOI | MR | Zbl

S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1968) 571–597. | Numdam | MR | Zbl

L. Tartar, The general theory of the homogenization. A personalized introduction. Springer, Berlin Heidelberger (2009). | MR | Zbl

Cité par Sources :