On the attainable set for scalar balance laws with distributed control
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 236-266.

The paper deals with the set of attainable profiles of a solution u to a scalar balance law in one space dimension with strictly convex flux function

         t u+ x f(u)=z(t,x).

Here the function z is regarded as a bounded measurable control. We are interested in studying the set of attainable profiles at a fixed time T>0, both in case z(t,·) is supported in the all real line, and in case z(t,·) is supported in a compact interval [a,b] independent on the time variable t.

Reçu le :
DOI : 10.1051/cocv/2015009
Classification : 35L65, 35Q93
Mots-clés : Conservation laws, distributed control
Corghi, Marco 1 ; Marson, Andrea 2

1 Via Monte Sabotino 99, 41124 Modena, Italy.
2 Dipartimento di Matematica, Via Trieste 63, 35121 Padova, Italy.
@article{COCV_2016__22_1_236_0,
     author = {Corghi, Marco and Marson, Andrea},
     title = {On the attainable set for scalar balance laws with distributed control},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {236--266},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {1},
     year = {2016},
     doi = {10.1051/cocv/2015009},
     zbl = {1335.35155},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2015009/}
}
TY  - JOUR
AU  - Corghi, Marco
AU  - Marson, Andrea
TI  - On the attainable set for scalar balance laws with distributed control
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 236
EP  - 266
VL  - 22
IS  - 1
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2015009/
DO  - 10.1051/cocv/2015009
LA  - en
ID  - COCV_2016__22_1_236_0
ER  - 
%0 Journal Article
%A Corghi, Marco
%A Marson, Andrea
%T On the attainable set for scalar balance laws with distributed control
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 236-266
%V 22
%N 1
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2015009/
%R 10.1051/cocv/2015009
%G en
%F COCV_2016__22_1_236_0
Corghi, Marco; Marson, Andrea. On the attainable set for scalar balance laws with distributed control. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 1, pp. 236-266. doi : 10.1051/cocv/2015009. http://archive.numdam.org/articles/10.1051/cocv/2015009/

D. Amadori, L. Gosse and G. Guerra, Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws. Arch. Ration. Mech. Anal. 162 (2002) 327–366. | DOI | Zbl

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000). | Zbl

F. Ancona and G.M. Coclite, On the attainable set for Temple class systems with boundary controls. SIAM J. Control Optim. 43 (2005) 2166–2190. | DOI | Zbl

F. Ancona and P. Goatin, Uniqueness and stability of L solutions for Temple class systems with boundary and properties of the attainable sets. SIAM J. Math. Anal. 34 (2002) 28–63. | DOI | Zbl

F. Ancona and A. Marson, On the attainable set for scalar nonlinear conservation laws with boundary control. SIAM J. Control Optim. 36 (1998) 290–312. | DOI | Zbl

F. Ancona and A. Marson, Asymptotic Stabilization of Systems of Conservation Laws by Controls Acting at a Single Boundary Point, in Control methods in PDE-dynamical systems. Vol. 426 of Contemp. Math. American Mathematical Society, Providence, RI (2007) 1–43 | Zbl

A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem. Oxford University Press, Oxford (2000). | Zbl

A. Bressan and G.M. Coclite, On the boundary control of systems of conservation laws. SIAM J. Control Optim. 41 (2002) 607–622. | DOI | Zbl

J.M. Coron, Control and Nonlinearity. Vol. 136 of Math. Surv. Monogr. American Mathematical Society, Providence, RI (2007). | Zbl

J.M. Coron, O. Glass and Z. Wang, Exact boundary controllability for 1-D quasilinear hyperbolic systems with a vanishing characteristic speed. SIAM J. Control Optim. 48 (2009/10) 3105–3122. | DOI | Zbl

M. Chapouly, Global controllability of nonviscous and viscous Burgers-type equations. SIAM J. Control Optim. 48 (2009) 1567–1599. | DOI | Zbl

C.M. Dafermos, Generalized characteristic and the structure of solutions of hyperbolic conservation laws. Indiana Math. J. 26 (1977) 1097–1119. | DOI | Zbl

C.M. Dafermos, Hyperbolic Conservation Laws in Continuum Physics, 2nd edition. Springer-Verlag, Berlin (2005). | Zbl

E. Fernández-Cara and S. Guerrero, Null controllability of the Burgers system with distributed controls. Systems Control Lett. 56 (2007) 366–372. | DOI | Zbl

O. Glass, On the controllability of the 1-D isentropic Euler equation. J. Eur. Math. Soc. 9 (2007) 427–486. | DOI | Zbl

O. Glass, On the controllability of the non-isentropic 1-D Euler equation. J. Differ. Equ. 257 (2014) 638–719. | DOI | Zbl

T. Horsin, On the controllability of the Burgers equation, ESAIM: COCV 3 (1998) 83–95. | Numdam | MR | Zbl

H. Holden and N.H. Risebro, Front Tracking for Hyperbolic Conservation Laws. Springer-Verlag, New York (2002). | MR | Zbl

S.N. Kruzkov, First order quasilinear equations in several independent variables. Math. USSR Sbornik 10 (1970) 217–243. | DOI | MR | Zbl

M. Léautaud, Uniform controllability of scalar conservation laws in the vanishing viscosity limit. SIAM J. Control Optim. 50 (2012) 1661–1699. | DOI | MR | Zbl

V. Perrollaz, Exact controllability of scalar conservation laws with an additional control in the context of entropy solutions. SIAM J. Control Optim. 50 (2012) 2025–2045. | DOI | MR | Zbl

V. Perrollaz, Asymptotic stabilization of entropy solutions to scalar conservation laws through a stationary feedback law. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 30 (2013) 879–915. | DOI | Numdam | MR | Zbl

R. Robyr, SBV regularity of entropy solutions for a class of genuinely nonlinear scalar balance laws with non-convex flux function. J. Hyperbolic Differ. Equ. 5 (2008) 449–475. | DOI | MR | Zbl

Cité par Sources :