Bang-bang trajectories with a double switching time in the minimum time problem
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 688-709.

In this paper we deal with the strong local optimality of a triplet satisfying Pontryagin Maximum Principle in the minimum time problem between two given manifolds. The reference control is assumed to be bang-bang with a double switching time. Our methods are based on a topological technique for the inversion of the projected maximised flow.

Reçu le :
DOI : 10.1051/cocv/2015021
Classification : 49K15, 49J15, 93C10
Mots clés : Hamiltonian methods, bang-bang controls, sufficient second order conditions
Poggiolini, Laura 1 ; Spadini, Marco 1

1 Dipartimento di Matematica e Informatica “Ulisse Dini”, Università degli Studi di Firenze, via di Santa Marta, 50139 3, Firenze, Italy.
@article{COCV_2016__22_3_688_0,
     author = {Poggiolini, Laura and Spadini, Marco},
     title = {Bang-bang trajectories with a double switching time in the minimum time problem},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {688--709},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {3},
     year = {2016},
     doi = {10.1051/cocv/2015021},
     zbl = {1344.49037},
     mrnumber = {3527939},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2015021/}
}
TY  - JOUR
AU  - Poggiolini, Laura
AU  - Spadini, Marco
TI  - Bang-bang trajectories with a double switching time in the minimum time problem
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 688
EP  - 709
VL  - 22
IS  - 3
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2015021/
DO  - 10.1051/cocv/2015021
LA  - en
ID  - COCV_2016__22_3_688_0
ER  - 
%0 Journal Article
%A Poggiolini, Laura
%A Spadini, Marco
%T Bang-bang trajectories with a double switching time in the minimum time problem
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 688-709
%V 22
%N 3
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2015021/
%R 10.1051/cocv/2015021
%G en
%F COCV_2016__22_3_688_0
Poggiolini, Laura; Spadini, Marco. Bang-bang trajectories with a double switching time in the minimum time problem. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 688-709. doi : 10.1051/cocv/2015021. http://archive.numdam.org/articles/10.1051/cocv/2015021/

M.R. Hestenes, Applications of the theory of quadratic forms in Hilbert space to calculus of variations. Pacific J. Math 1 (1951) 525–581. | DOI | MR | Zbl

L. Poggiolini, On local state optimality of bang-bang extremals in a free horizon Bolza problem. Rendiconti del Seminario Matematico dell’Università e del Politecnico di Torino (2006). | MR | Zbl

L. Poggiolini and M. Spadini, Sufficient Optimality Conditions for a Bang-bang Trajectory in a Bolza Problem. In Mathematical Control Theory and Finance, edited by A. Sarychev, A. Shiryaev, M. Guerra and M. do Rosário Grossinho. Springer, Berlin, Heidelberg (2008) 337–357. | MR | Zbl

L. Poggiolini and M. Spadini, Bang-bang trajectories with a double switching time: sufficient strong local optimality conditions. Preprint (2010). | arXiv

L. Poggiolini and M. Spadini, Strong local optimality for a bang-bang trajectory in a Mayer problem. SIAM J. Control Optim. 49 (2011) 140–161. | DOI | MR | Zbl

L. Poggiolini and M. Spadini, Local inversion of planar maps with nice nondifferentiability structure. Adv. Nonlin. Stud. 13 (2013) 411–430. | DOI | MR | Zbl

L. Poggiolini and G. Stefani, State-local optimality of a bang-bang trajectory: a Hamiltonian approach. Syst. Control Lett. 53 (2004) 269–279. | DOI | MR | Zbl

L. Poggiolini and G. Stefani, Bang-singular-bang extremals: sufficient optimality conditions. J. Dyn. Control Syst. 17 (2011) 469–514. | DOI | MR | Zbl

G. Stefani and P. Zezza, Time-Optimality of a Bang-bang Trajectory with Maple. In 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control (2003). | MR

Cité par Sources :