Time-dependent mean-field games in the superquadratic case
ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 562-580.

We investigate time-dependent mean-field games with superquadratic Hamiltonians and a power dependence on the measure. Such problems pose substantial mathematical challenges as key techniques used in the subquadratic case, which was studied in a previous publication of the authors, do not extend to the superquadratic setting. The main objective of the present paper is to address these difficulties. Because of the superquadratic structure of the Hamiltonian, Lipschitz estimates for the solutions of the Hamilton−Jacobi equation are obtained here through a novel set of techniques. These explore the parabolic nature of the problem through the nonlinear adjoint method. Well-posedness is proven by combining Lipschitz regularity for the Hamilton−Jacobi equation with polynomial estimates for solutions of the Fokker−Planck equation. Existence of classical solutions is then established under conditions depending only on the growth of the Hamiltonian and the dimension. Our results also add to current understanding of superquadratic Hamilton−Jacobi equations.

Reçu le :
DOI : 10.1051/cocv/2015029
Classification : 35A01, 35A09, 35K10, 35J60
Mots-clés : Mean-field games, initial terminal value problem, superquadratic Hamiltonians, nonlinear adjoint method
Gomes, Diogo A. 1 ; Pimentel, Edgard 2 ; Sánchez-Morgado, Héctor 3

1 King Abdullah University of Science and Technology (KAUST), CEMSE Division and KAUST SRI, Center for Uncertainty Quantification in Computational Science and Engineering, 23955-6900 Thuwal. Saudi Arabia
2 Universidade Federal do São Carlos, Department of Mathematics, 13560-250 São Carlos-SP, Brazil
3 Instituto de Matemáticas, Universidad Nacional Autónoma de México. DF 04510 México, México.
@article{COCV_2016__22_2_562_0,
     author = {Gomes, Diogo A. and Pimentel, Edgard and S\'anchez-Morgado, H\'ector},
     title = {Time-dependent mean-field games in the superquadratic case},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {562--580},
     publisher = {EDP-Sciences},
     volume = {22},
     number = {2},
     year = {2016},
     doi = {10.1051/cocv/2015029},
     mrnumber = {3491784},
     zbl = {1339.35090},
     language = {en},
     url = {http://archive.numdam.org/articles/10.1051/cocv/2015029/}
}
TY  - JOUR
AU  - Gomes, Diogo A.
AU  - Pimentel, Edgard
AU  - Sánchez-Morgado, Héctor
TI  - Time-dependent mean-field games in the superquadratic case
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2016
SP  - 562
EP  - 580
VL  - 22
IS  - 2
PB  - EDP-Sciences
UR  - http://archive.numdam.org/articles/10.1051/cocv/2015029/
DO  - 10.1051/cocv/2015029
LA  - en
ID  - COCV_2016__22_2_562_0
ER  - 
%0 Journal Article
%A Gomes, Diogo A.
%A Pimentel, Edgard
%A Sánchez-Morgado, Héctor
%T Time-dependent mean-field games in the superquadratic case
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2016
%P 562-580
%V 22
%N 2
%I EDP-Sciences
%U http://archive.numdam.org/articles/10.1051/cocv/2015029/
%R 10.1051/cocv/2015029
%G en
%F COCV_2016__22_2_562_0
Gomes, Diogo A.; Pimentel, Edgard; Sánchez-Morgado, Héctor. Time-dependent mean-field games in the superquadratic case. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 2, pp. 562-580. doi : 10.1051/cocv/2015029. http://archive.numdam.org/articles/10.1051/cocv/2015029/

Y. Achdou, Finite Difference Methods for Mean Field Games. In Hamilton-Jacobi Equations: Approximations, Numerical Analysis and Applications. Springer (2013) 1–47. | MR | Zbl

Y. Achdou and I. Capuzzo-Dolcetta, Mean field games: numerical methods. SIAM J. Numer. Anal. 48 (2010) 1136–1162. | DOI | MR | Zbl

Y. Achdou, F. Camilli and I. Capuzzo-Dolcetta, Mean field games: numerical methods for the planning problem. SIAM J. Control Optim. 50 (2012) 77–109. | DOI | MR | Zbl

H. Amann and M.G. Crandall, On some existence theorems for semi-linear elliptic equations. Indiana Univ. Math. J. 27 (1978) 779–790. | DOI | MR | Zbl

G. Barles, A short proof of the C 0,α -regularity of viscosity subsolutions for superquadratic viscous Hamilton-Jacobi equations and applications. Nonlin. Anal. 73 (2010) 31–47. | DOI | MR | Zbl

I. Capuzzo Dolcetta, F. Leoni and A. Porretta, Hölder estimates for degenerate elliptic equations with coercive Hamiltonians. Trans. Amer. Math. Soc. 362 (2010) 4511–4536. | DOI | MR | Zbl

P. Cardaliaguet, Notes on Mean-Field Games (2011).

P. Cardaliaguet, Long time average of first order mean field games and weak KAM theory. Dyn. Games Appl. 3 (2013) 473–488. | DOI | MR | Zbl

P. Cardaliaguet, Weak solutions for first order mean-field games with local coupling. Preprint (2013). | arXiv | MR

P. Cardaliaguet and L. Silvestre, Hölder continuity to Hamilton-Jacobi equations with superquadratic growth in the gradient and unbounded right-hand side. Comm. Partial Differ. Equ. 37 (2012) 1668–1688. | DOI | MR | Zbl

P. Cardaliaguet, J.-M. Lasry, P.-L. Lions and A. Porretta, Long time average of mean field games. Netw. Heterog. Media 7 (2012) 279–301. | DOI | MR | Zbl

P. Cardaliaguet, P. Garber, A. Porretta and D. Tonon, Second order mean field games with degenerate diffusion and local coupling. Nonlin. Differ. Eq. Appl. 22 (2015) 1287–1317. | DOI | MR | Zbl

R. Carmona and F. Delarue, Mean field forward-backward stochastic differential equations. Electron. Commun. Probab. 18 (2013). | DOI | MR | Zbl

R. Carmona and F. Delarue, Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51 (2013) 2705–2734. | DOI | MR | Zbl

L.C. Evans, Further PDE methods for weak KAM theory. Calc. Var. Partial Differ. Equ. 35 (2009) 435–462. | DOI | MR | Zbl

L.C. Evans. Adjoint and compensated compactness methods for Hamilton-Jacobi PDE. Arch. Ration. Mech. Anal. 197 (2010) 1053–1088. | DOI | MR | Zbl

R. Ferreira and D. A. Gomes, On the convergence of finite state mean-field games through Γ-convergence. J. Math. Anal. Appl. 418 (2014) 211–230. | DOI | MR | Zbl

D. Gomes and H. Mitake, Stationary mean-field games with congestion and quadratic hamiltonians. Preprint . | arXiv | MR

D. Gomes and S. Patrizi, Obstacle mean-field game problem. Interf. Free Boundaries 17 (2015) 55–68. | DOI | MR | Zbl

D. Gomes and E. Pimentel, Time dependent mean-field games with logarithmic nonlinearities. SIAM: J. Math. Anal. 47 (2015) 3798–3812. | DOI | MR | Zbl

D. Gomes and E. Pimentel, Local regularity for mean-field games in the whole space. Minimax Theory and its Applications 1 (2016) 65–82. | MR | Zbl

D. Gomes and H. Sánchez Morgado, A stochastic Evans-Aronsson problem. Trans. Amer. Math. Soc. 366 (2014) 903–929. | DOI | MR | Zbl

D. Gomes and J. Saúde, Mean Field Games Models–A Brief Survey. Dyn. Games Appl. 4 (2014) 110–154. | DOI | MR | Zbl

D. Gomes and V. Voskanyan, Extended deterministic mean-field games. Preprint (2013). | arXiv | MR

D. Gomes and V. Voskanyan, Short-time existence of solutions for mean-field games with congestion. Preprint (2015). | arXiv | MR

D. Gomes, R. Iturriaga, H. Sánchez−Morgado and Y. Yu, Mather measures selected by an approximation scheme. Proc. Amer. Math. Soc. 138 (2010) 3591–3601. | DOI | MR | Zbl

D. Gomes, J. Mohr and R.R. Souza, Discrete time, finite state space mean field games. J. Math. Pures Appl. 93 (2010) 308–328. | DOI | MR | Zbl

D. Gomes, J. Mohr and R.R. Souza, Continuous time finite state mean-field games. Appl. Math. Optim. 68 (2013) 99–143. | DOI | MR | Zbl

D. Gomes, S. Patrizi and V. Voskanyan, On the existence of classical solutions for stationary extended mean field games. Nonlin. Anal. 99 (2014) 49–79. | DOI | MR | Zbl

D. Gomes, E. Pimentel and H. Sánchez−Morgado, Time-dependent mean-field games in the subquadratic case. Commun. Partial Differ. Equ. 40 (2015) 40–76. | DOI | MR | Zbl

D.A. Gomes, G.E. Pires and H. Sánchez-Morgado, A priori estimates for stationary mean-field games. Netw. Heterog. Media 7 (2012) 303–314. | DOI | MR | Zbl

O. Guéant, Mean Field Games and Applications to Economics. Ph.D. thesis, Université Paris Dauphine, Paris (2009).

O. Guéant, A reference case for mean field games models. J. Math. Pures Appl. 92 (2009) 276–294. | DOI | MR | Zbl

M. Huang, R.P. Malhamé and P.E. Caines, Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 (2006) 221–251. | DOI | MR | Zbl

M. Huang, P.E. Caines and R.P. Malhamé, Large-population cost-coupled LQG problems with nonuniform agents: individual-mass behavior and decentralized ϵ-Nash equilibria. IEEE Trans. Automat. Control 52 (2007) 1560–1571. | DOI | MR | Zbl

A. Lachapelle, J. Salomon and G. Turinici, Computation of mean field equilibria in economics. Math. Models Methods Appl. Sci. 20 (2010) 567–588. | DOI | MR | Zbl

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343 (2006) 619–625. | DOI | MR | Zbl

J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343 (2006) 679–684. | DOI | MR | Zbl

J.-M. Lasry and P.-L. Lions, Mean field games. Jpn. J. Math. 2 (2007) 229–260. | DOI | MR | Zbl

J.-M. Lasry and P.-L. Lions, Mean field games. Cahiers de la Chaire Finance et Développement Durable (2007). | Zbl

J.-M. Lasry, P.-L. Lions and O. Guéant, Application of mean field games to growth theory. Preprint (2010).

J.-M. Lasry, P.-L. Lions and O. Guéant, Mean Field Games and Applications. Paris-Princeton lectures on Mathematical Finance 2010. In Lect. Notes Math. (2011) 205. | MR | Zbl

P.-L. Lions, College de france course on mean-field games, 2007−2011.

P.-L. Lions, IMA, University of Minessota. Course on mean-field games. Video (2012).

S .L. Nguyen and M. Huang. Linear-quadratic-Gaussian mixed games with continuum-parametrized minor players. SIAM J. Control Optim. 50 (2012) (2907–2937). | DOI | MR | Zbl

E.A. Pimentel, Time dependent mean-field games. IST-UL. Ph.D. thesis, Lisbon (2013).

A. Porretta, On the planning problem for the mean-field games system. Dyn. Games Appl. 4 (2013) 231–256. | DOI | MR | Zbl

A. Porretta, Weak solutions to Fokker-Planck equations and mean field games. Arch. Ration. Mech. Anal. 216 (2015) 1–62. | DOI | MR | Zbl

Cité par Sources :