We investigate the role of the noncompact group of dilations in
DOI : 10.1051/cocv/2015032
Mots-clés : Fractional Laplace operators, Navier and Dirichlet boundary conditions, Sobolev inequality, critical dimensions
@article{COCV_2016__22_3_832_0, author = {Musina, Roberta and Nazarov, Alexander I.}, title = {On fractional {Laplacians} {\textendash} 3}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {832--841}, publisher = {EDP-Sciences}, volume = {22}, number = {3}, year = {2016}, doi = {10.1051/cocv/2015032}, mrnumber = {3527946}, zbl = {1354.35179}, language = {en}, url = {https://www.numdam.org/articles/10.1051/cocv/2015032/} }
TY - JOUR AU - Musina, Roberta AU - Nazarov, Alexander I. TI - On fractional Laplacians – 3 JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2016 SP - 832 EP - 841 VL - 22 IS - 3 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/cocv/2015032/ DO - 10.1051/cocv/2015032 LA - en ID - COCV_2016__22_3_832_0 ER -
%0 Journal Article %A Musina, Roberta %A Nazarov, Alexander I. %T On fractional Laplacians – 3 %J ESAIM: Control, Optimisation and Calculus of Variations %D 2016 %P 832-841 %V 22 %N 3 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/cocv/2015032/ %R 10.1051/cocv/2015032 %G en %F COCV_2016__22_3_832_0
Musina, Roberta; Nazarov, Alexander I. On fractional Laplacians – 3. ESAIM: Control, Optimisation and Calculus of Variations, Tome 22 (2016) no. 3, pp. 832-841. doi : 10.1051/cocv/2015032. https://www.numdam.org/articles/10.1051/cocv/2015032/
On some critical problems for the fractional Laplacian operator. J. Differ. Equ. 252 (2012) 6133–6162. | DOI | MR | Zbl
, , and ,M. Bonforte, Y. Sire and J.L. Vazquez, Existence, uniqueness and asymptotic behaviour for fractional porous medium equations on bounded domains. Preprint (2014). | arXiv | MR
Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36 (1983) 437–477. | DOI | MR | Zbl
and ,Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 31 (2014) 23–53. | DOI | Numdam | MR | Zbl
and ,An extension problem related to the fractional Laplacian. Commun. Part. Differ. Equ. 32 (2007) 1245–1260. | DOI | MR | Zbl
and ,Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59 (2006) 330–343. | DOI | MR | Zbl
, and ,Perturbations of a critical fractional equation. Pacific J. Math. 271 (2014) 65–84. | DOI | MR | Zbl
, and ,Best constants for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295 (2004) 225–236. | DOI | MR | Zbl
and ,Hardy inequalities with optimal constants and remainder terms. Trans. Amer. Math. Soc. 356 (2004) 2149–2168. | DOI | MR | Zbl
, and ,F. Gazzola, H.-C. Grunau and G. Sweers, Polyharmonic Boundary Value Problems. Vol. 1991 of Lect. Notes Math. Springer, Berlin (2010). | MR | Zbl
Sharp Sobolev inequalities in critical dimensions. Michigan Math. J. 51 (2003) 27–45. | MR | Zbl
,
Spectral theory of the operator
J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications. Vol. I, translated from the French by P. Kenneth. Springer, New York (1972). | MR | Zbl
A simple approach to Hardy inequalities. Mat. Zametki 67 (2000) 563–572 (in Russian). English transl.: Math. Notes 67 (2000) 479–486. | MR | Zbl
,On fractional Laplacians. Commun. Partial Differ. Equ. 39 (2014) 1780–1790. | DOI | MR | Zbl
and ,Non-critical dimensions for critical problems involving fractional Laplacians. Rev. Mat. Iberoamer. 32 (2016) 257–266. | DOI | MR | Zbl
and ,R. Musina and A.I. Nazarov, On fractional Laplacians − 2. Preprint (2014). | arXiv | Numdam | MR
On the Sobolev and Hardy constants for the fractional Navier Laplacian. Nonlin. Anal. 121 (2015) 123–129. | DOI | MR | Zbl
and ,Critical exponents and critical dimensions for polyharmonic operators. J. Math. Pures Appl. (9) 69 (1990) 55–83. | MR | Zbl
and ,The Brezis-Nirenberg result for the fractional Laplacian. Trans. Amer. Math. Soc. 367 (2015) 67–102. | DOI | MR | Zbl
and ,A Brezis-Nirenberg result for non-local critical equations in low dimension. Commun. Pure Appl. Anal. 12 (2013) 2445–2464. | DOI | MR | Zbl
and ,Extension problem and Harnack’s inequality for some fractional operators. Commun. Partial Differ. Equ. 35 (2010) 2092–2122. | DOI | MR | Zbl
and ,The Brezis-Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differ. Equ. 42 (2011) 21–41. | DOI | MR | Zbl
,H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. Deutscher Verlag Wissensch. Berlin (1978). | MR | Zbl
Best constant for the embedding of the space
On the theory of the discrete spectrum of the three-particle Schrödinger operator. Mat. Sbornik 94(136) (1974) 567–593 (Russian); English transl.: Math. USSR Sbornik 23 (1974) 535–559. | MR | Zbl
,D.R. Yafaev, Mathematical Scattering Theory: Analytic Theory, Vol. 158 of Math. Surv. Monogr. AMS (2010). | MR | Zbl
Cité par Sources :